Advertisement Remove all ads

The function f(x) = x(x+3)e-x2 satisfies all the conditions of Rolle's theorem on [– 3, 0]. Find the value of c such that f'(c) = 0. - Mathematics and Statistics

Sum

The function f(x) = `x(x + 3)e^(-(x)/2)` satisfies all the conditions of Rolle's theorem on [– 3, 0]. Find the value of c such that f'(c) = 0.

Advertisement Remove all ads

Solution

The function f(x) satisfies all the conditions of Rolle's theorem on [– 3, 0] such that f'(c) = 0.

Now, f(x) = `x(x + 3)e^(-x/2)`

= `(x^2 + 3x)e^(-x/2)`

∴ f'(x) = `d/dx[(x^2 + 3x)e^(-x/2)]`

= `(x^2 + 3x).d/dx(e^(-x/2)) + e^(-x/2).d/dx(x^2 + 3x)`

= `(x^2 + 3x).e^(-x/2).d/dx(-x/2) + e^(-x/2) xx (2x + 3 xx 1)`

= `(x^2 + 3x).e^(-x/2) xx -(1)/(2) + e^(-x/2)(2x + 3)`

= `e^(-x/2)[(2x + 3) - (x^2 + 3x)/2]`

= `e^(-x/2)[(4x + 6 - x^2 - 3x)/2]`

= `(e^(-x/2))/2(6 + x - x^2)`

= `(e^(-x/2))/2(3 - x)(2 + x)`

∴ f'(c) = `(e^(-c/2))/2(3 - c)(2 + c)`

∴ f'(c) = 0 gives `(e^(-c/2))/2(3 - c)(2 + c)` = 0

∴ (3 – c)(2 + c) = 0        ...`[∵ (e^(-c/2))/2 ≠ 0]`

∴ (3 – c) = 0 or (2 + c) = 0 
∴ c = 3 or c = – 2
But `3 notin ( - 3, 0)` 
∴ c ≠ 3
Hence, c = – 2.

Concept: Rolle's Theorem
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×