# The function f(x) = x(x+3)e-x2 satisfies all the conditions of Rolle's theorem on [– 3, 0]. Find the value of c such that f'(c) = 0. - Mathematics and Statistics

Sum

The function f(x) = x(x + 3)e^(-(x)/2) satisfies all the conditions of Rolle's theorem on [– 3, 0]. Find the value of c such that f'(c) = 0.

#### Solution

The function f(x) satisfies all the conditions of Rolle's theorem on [– 3, 0] such that f'(c) = 0.

Now, f(x) = x(x + 3)e^(-x/2)

= (x^2 + 3x)e^(-x/2)

∴ f'(x) = d/dx[(x^2 + 3x)e^(-x/2)]

= (x^2 + 3x).d/dx(e^(-x/2)) + e^(-x/2).d/dx(x^2 + 3x)

= (x^2 + 3x).e^(-x/2).d/dx(-x/2) + e^(-x/2) xx (2x + 3 xx 1)

= (x^2 + 3x).e^(-x/2) xx -(1)/(2) + e^(-x/2)(2x + 3)

= e^(-x/2)[(2x + 3) - (x^2 + 3x)/2]

= e^(-x/2)[(4x + 6 - x^2 - 3x)/2]

= (e^(-x/2))/2(6 + x - x^2)

= (e^(-x/2))/2(3 - x)(2 + x)

∴ f'(c) = (e^(-c/2))/2(3 - c)(2 + c)

∴ f'(c) = 0 gives (e^(-c/2))/2(3 - c)(2 + c) = 0

∴ (3 – c)(2 + c) = 0        ...[∵ (e^(-c/2))/2 ≠ 0]

∴ (3 – c) = 0 or (2 + c) = 0
∴ c = 3 or c = – 2
But 3 notin ( - 3, 0)
∴ c ≠ 3
Hence, c = – 2.

Concept: Rolle's Theorem
Is there an error in this question or solution?