The function f is defined by \[f\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 3 \\ 3x, & 3 \leq x \leq 10\end{cases}\] The relation g is defined by \[g\left( x \right) = \begin{cases}x^2 , & 0 \leq x \leq 2 \\ 3x, & 2 \leq x \leq 10\end{cases}\]
Show that f is a function and g is not a function.
Advertisement Remove all ads
Solution
The function f is defined by
\[f\left( x \right) = \begin{cases}x^2 & 0 \leqslant x \leqslant 3 \\ 3x & 3 \leqslant x \leqslant 10\end{cases}\]
It is observed that for 0 ≤ x < 3, f (x) = x2 .
3 < x ≤ 10, f (x) = 3x
Also, at x = 3, f(x) = 32 = 9. And
f (x) = 3 × 3 = 9.
That is, at x = 3, f (x) = 9.
Therefore, for 0 ≤ x ≤ 10, the images of f (x) are unique.
Thus, the given relation is a function.
Again,
the relation g is defined as
3 < x ≤ 10, f (x) = 3x
Also, at x = 3, f(x) = 32 = 9. And
f (x) = 3 × 3 = 9.
That is, at x = 3, f (x) = 9.
Therefore, for 0 ≤ x ≤ 10, the images of f (x) are unique.
Thus, the given relation is a function.
Again,
the relation g is defined as
\[g\left( x \right) = \begin{cases}x^2 , & 0 \leqslant x \leqslant 2 \\ 3x, & 2 \leqslant x \leqslant 10\end{cases}\]
It can be observed that for x = 2, g(x) = 22 = 4 and also,
g(x) = 3 × 2 = 6.
Hence, 2 in the domain of the relation g corresponds to two different images, i.e. 4 and 6.
Hence, this relation is not a function.
Hence proved.
g(x) = 3 × 2 = 6.
Hence, 2 in the domain of the relation g corresponds to two different images, i.e. 4 and 6.
Hence, this relation is not a function.
Hence proved.
Concept: Concept of Functions
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads