MCQ
The factors of x3 − 7x + 6 are
Options
x (x − 6) (x − 1)
(x2 − 6) (x − 1)
(x + 1) (x + 2) (x + 3)
(x − 1) (x + 3) (x − 2)
Advertisement Remove all ads
Solution
The given expression to be factorized is x3 − 7x + 6
This can be written in the form
x3 − 7x + 6 ` = x^3 - (1 + 6) x + 6`
` = x^3 -x -6x +6`
Take common x from the first two terms and -6from the last two terms. Then we have
x3 − 7x + 6 = `x(x^2 -1) -6 (x-1)`
` = x{(x)^2 - (1)^2 } -6 (x-1)`
` = x(x+1)(x-1) -6 (x-1)`
Finally, take common(x-1)from the above expression,
x3 − 7x + 6 = `(x-1){x(x+1) - 6}`
`= (x - 1)(x^2 + x - 6)`
` = (x -1) (x^2 + 3x - 2x - 6)`
` = (x-1){x (x+3) -2 (x+3)}`
` = (x - 1) (x+3) (x-2)`
Concept: Algebraic Expressions
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads