Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

The Equation of a Wave Travelling on a String Stretched Along The X-axis is Given by - Physics

Sum

The equation of a wave travelling on a string stretched along the X-axis is given by
\[y = A  e {}^-  \left( \frac{x}{a} + \frac{t}{T} \right)^2  .\]
(a) Write the dimensions of A, a and T. (b) Find the wave speed. (c) In which direction is the wave travelling? (d) Where is the maximum of the pulse located at t = T? At t = 2 T?

Advertisement Remove all ads

Solution

Given,
Equation of the wave travelling on a string stretched along the X-axis:

\[y = Ae {}^\left( \frac{x}{a} + \frac{t}{T} \right) {{}^-}^2 \] 
(a) The dimensions of A (amplitude), T (time period) and \[a = \frac{\lambda}{2\pi}\] , which will have the dimensions of the wavelength, are as follows: 

\[\left[ A \right]   =   \left[ M^0 L^1 T^0 \right]\] 

\[\left[ T \right] = \left[ M^0 L^0 T^{- 1} \right]\] 

\[\left[ a \right] = \left[ M^0 L^1 T^0 \right]\]
(b) Wave speed, \[\nu = \frac{\lambda}{T} = \frac{a}{T}                \left[ \lambda = a \right]\] 
(c) If \[y = f  \left( t + \frac{x}{\nu} \right)\] , then the wave travels in the negative direction; and if \[y = f  \left( t - \frac{x}{\nu} \right)\] ,then the wave travels in the positive direction.
Thus, we have:

`"y"="Ae"^[[(x/a)+(t/T)]^(-2)]`

\[       = A e^{- \frac{1}{T} \left[ t + \left( \frac{xT}{a} \right) \right]^2} \] 

\[       = A e^{- \frac{1}{T}\left[ t + \frac{x}{V} \right]} \] 

\[       =   A e^{- f\left[ t + \frac{x}{V} \right]}\]
Hence, the wave is travelling is the negative direction.
(d) Wave speed, \[v = \frac{a}{t}\] Maximum pulse at T  = \[\left( \frac{a}{T} \right) \times T = a\]                (Along  the  negative  x - axis)
Maximum pulse at t = 2T\[\left( \frac{a}{T} \times 2T \right) = 2a \]             (Along  the  negative  x - axis)

Therefore, the wave is travelling in the negative x-direction.

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

HC Verma Class 11, 12 Concepts of Physics 1
Chapter 15 Wave Motion and Waves on a String
Q 2 | Page 323
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×