Advertisement Remove all ads

The Equation of the Line with Slope −3/2 and Which is Concurrent with the Lines 4x + 3y − 7 = 0 and 8x + 5y − 1 = 0 is - Mathematics

MCQ

The equation of the line with slope −3/2 and which is concurrent with the lines 4x + 3y − 7 = 0 and 8x + 5y − 1 = 0 is

Options

  •  3x + 2y − 63 = 0

  •  3x + 2y − 2 = 0

  • 2y − 3x − 2 = 0

  • none of these

Advertisement Remove all ads

Solution

 3x + 2y − 2 = 0

Given:
4x + 3y − 7 = 0      ... (1)
8x + 5y − 1 = 0      ... (2)
The equation of the line with slope \[- \frac{3}{2}\] is given below: \[y = - \frac{3}{2}x + c\] \[\Rightarrow \frac{3}{2}x + y - c = 0\]          ... (3)
The lines (1), (2) and (3) are concurrent.

\[\therefore \begin{vmatrix}4 & 3 & - 7 \\ 8 & 5 & - 1 \\ \frac{3}{2} & 1 & - c\end{vmatrix} = 0\]

\[ \Rightarrow 4\left( - 5c + 1 \right) - 3\left( - 8c + \frac{3}{2} \right) - 7\left( 8 - \frac{15}{2} \right) = 0\]

\[ \Rightarrow - 20c + 4 + 24c - \frac{9}{2} - 56 + \frac{105}{2} = 0\]

\[ \Rightarrow \frac{- 40c + 8 + 48c - 9 - 112 + 105}{2} = 0\]

\[ \Rightarrow 8c = 8\]

\[ \Rightarrow c = 1\]

On substituting c = 1 in \[y = - \frac{3}{2}x + c\], we get:

\[y = - \frac{3}{2}x + 1\]

\[ \Rightarrow 3x + 2y - 2 = 0\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 23 The straight lines
Q 30 | Page 135
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×