Advertisement Remove all ads

The Equation of the Hyperbola Whose Foci Are (6, 4) and (−4, 4) and Eccentricity 2, is - Mathematics

MCQ

The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is

Options

  • \[\frac{(x - 1 )^2}{25/4} - \frac{(y - 4 )^2}{75/4} = 1\]

  • \[\frac{(x + 1 )^2}{25/4} - \frac{(y + 4 )^2}{75/4} = 1\]

  • \[\frac{(x - 1 )^2}{75/4} - \frac{(y - 4 )^2}{25/4} = 1\]

  • none of these

Advertisement Remove all ads

Solution

\[\frac{(x - 1 )^2}{25/4} - \frac{(y - 4 )^2}{75/4} = 1\]

The centre of the hyperbola is the midpoint of the line joining the two foci.
So, the coordinates of the centre are \[\left( \frac{6 - 4}{2}, \frac{4 + 4}{2} \right), i . e . \left( 1, 4 \right) .\]

Let 2a and 2b be the length of the transverse and the conjugate axes, respectively. Also, let e be the eccentricity.

\[\Rightarrow \frac{\left( x - 1 \right)^2}{a^2} - \frac{\left( y - 4 \right)^2}{b^2} = 1\]

Now, distance between the two foci = 2ae

\[2ae = \sqrt{\left( 6 + 4 \right)^2 + \left( 4 - 4 \right)^2}\]

\[ \Rightarrow 2ae = 10\]

\[ \Rightarrow ae = 5\]

\[ \Rightarrow a = \frac{5}{2}\]

\[\text { Also }, b^2 = \left( ae \right)^2 - \left( a \right)^2 \]

\[ \Rightarrow b^2 = 25 - \left( \frac{25}{4} \right)\]

\[ \Rightarrow b^2 = \frac{75}{4}\]

Equation of the hyperbola is given below:

\[\frac{\left( x - 1 \right)^2}{25/4} - \frac{\left( y - 4 \right)^2}{75/4} = 1\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 27 Hyperbola
Q 14 | Page 19
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×