The Distance (In Km) of 40 Engineers from Their Residence to Their Place of Work Were Found as Follows - Mathematics

Advertisements
Advertisements

The distance (in km) of 40 engineers from their residence to their place of work were found as follows:-

5 3 10 20 25 11 13 7 12 31
19 10 12 17 18 11 32 17 16 2
7 9 7 8 3 5 12 15 18 3
12 14 2 9 6 15 15 7 6 12

Construct a grouped frequency distribution table with class size 5 for the data given above taking the first interval as 0-5 (5 not included). What main features do you observe from this tabular representation?

Advertisements

Solution

It is given that a grouped frequency distribution table of class size 5 has to be constructed. Therefore, the class intervals will be 0 − 5, 5 − 10, 10 − 15, 15 −20…

By observing the data given as above, a grouped frequency distribution table can be constructed as follows.

Distance (in km) Tally mark Number of engineers
0 − 5 5
5 − 10   11
10 −15   11
15 − 20 9
20 − 25 | 1
25 − 30 | 1
30 − 35 || 2
Total   40

It can be observed that there are very few engineers whose homes are at more than or equal to 20 km distance from their work place. Most of the engineers have their workplace up to 15 km distance from their homes.

  Is there an error in this question or solution?
Chapter 14: Statistics - Exercise 14.2 [Page 245]

APPEARS IN

NCERT Mathematics Class 9
Chapter 14 Statistics
Exercise 14.2 | Q 2 | Page 245

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A study was conducted to find out the concentration of sulphur dioxide in the air in parts per million (ppm) of a certain city. The data obtained for 30 days is as follows:-

0.03 0.08 0.08 0.09 0.04 0.17
0.16 0.05 0.02 0.06 0.18 0.20
0.11 0.08 0.12 0.13 0.22 0.07
0.08 0.01 0.10 0.06 0.09 0.18
0.11 0.07 0.05 0.07 0.01 0.04

(i) Make a grouped frequency distribution table for this data with class intervals as 0.00 - 0.04, 0.04 - 0.08, and so on.

(ii) For how many days, was the concentration of sulphur dioxide more than 0.11 parts per million?


Write the class size and class limits in each of the following:
(i) 104, 114, 124, 134, 144, 154, and 164
(ii) 47, 52, 57, 62, 67, 72, 77, 82, 87, 92, 97 and 102
(iii) 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5


The daily minimum temperatures in degrees Ce1siu& recorded in a certain Arctic region are
as follows:
−12.5, −10.8, −18.6, −8.4, −10.8, −4.2, −4.8, −6.7, −13.2, −11.8, −2.3, 1.2, 2.6, 0, 2.4,
0, 3.2, 2.7, 3.4, 0, − 2.4, − 2.4, 0, 3.2, 2.7, 3.4, 0, − 2.4, − 5.8, -8.9, 14.6, 12.3, 11.5, 7.8,2.9.
Represent them as frequency distribution table taking − 19.9 to − 15 as the first class
interval.


Thirty children were asked about the number of hours they watched T.V. programmers in the previous week. The results were found as follows:

1 6 2 3 5 12 5 8 4 8
10 3 4 12 2 8 15 1 17 6
3 2 8 5 9 6 8 7 14 12

(i) Make a grouped frequency distribution table for this data, taking class width 5 and one of the class intervals as 5 – 10.
(ii)How many children watched television for 15 or more hours a week?


The difference between the highest and lowest values of the observations is called


The difference between the upper and the lower class limits is called


The mid-value of a class interval is 42. If the class size is 10, then the upper and lower limits of the class are:


The number of times a particular item occurs in a given data is called its


The following marks were obtained by the students in a test:
81, 72, 90, 90, 86, 85, 92, 70, 71, 83, 89, 95, 85, 79, 62
The range of the marks is


Tallys are usually marked in a bunch of


Share
Notifications



      Forgot password?
Use app×