Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

The Distance Between the Orthocentre and Circumcentre of the Triangle with Vertices (1, 2), (2, 1) and - Mathematics

MCQ

The distance between the orthocentre and circumcentre of the triangle with vertices (1, 2), (2, 1) and \[\left( \frac{3 + \sqrt{3}}{2}, \frac{3 + \sqrt{3}}{2} \right)\]  is

Options

  • 0

  • \[\sqrt{2}\]

  • \[3 + \sqrt{3}\]

  •  none of these

Advertisement Remove all ads

Solution

Let A(1, 2), B(2, 1) and C  \[\left( \frac{3 + \sqrt{3}}{2}, \frac{3 + \sqrt{3}}{2} \right)\] be the given points.

\[\therefore \text { AB } = \sqrt{\left( 2 - 1 \right)^2 + \left( 1 - 2 \right)^2}\]

\[ = \sqrt{2}\]

\[\text { BC } = \sqrt{\left( \frac{3 + \sqrt{3}}{2} - 2 \right)^2 + \left( \frac{3 + \sqrt{3}}{2} - 1 \right)^2}\]

\[ = \sqrt{2}\]

\[\text { AC }= \sqrt{\left( \frac{3 + \sqrt{3}}{2} - 1 \right)^2 + \left( \frac{3 + \sqrt{3}}{2} - 2 \right)^2}\]

\[ = \sqrt{2}\]

Thus, ABC is an equilateral triangle.
We know that the orthocentre and the circumcentre of an equilateral triangle are same.
So, the distance between the the orthocentre and the circumcentre of the triangle
with vertices (1, 2), (2, 1) and \[\left( \frac{3 + \sqrt{3}}{2}, \frac{3 + \sqrt{3}}{2} \right)\] is 0.

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 23 The straight lines
Q 3 | Page 133
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×