Sum
The direction ratios of `bar"AB"` are −2, 2, 1. If A = (4, 1, 5) and l(AB) = 6 units, Then find B.
Advertisement Remove all ads
Solution
The direction ratios of `bar"AB"` are −2, 2, 1
Let l, m, n be the direction cosines of AB.
∴ l = `+- ((-2))/sqrt((-2)^2 + 2^2 + 1^2)`
= `+-(-2/3)`
m = `+- 2/sqrt((-2)^2 + 2^2 + 1^2)`
= `+-2/3`
n = `+- 1/sqrt((-2)^2 + 2^2 + 1^2)`
= `+- 1/3`
Now, A ≡ (4, 1, 5) and `|bar"AB"|` = 6 .......[Given]
If B ≡ (x, y, z), then
x – 4 = `+-(-2/3)|bar"AB"|`
y – 1 = `+- 2/3|bar"AB"|`
z – 5 = `+- 1/3|bar"AB"|`
∴ x = `4 +- (-2/3)(6)`
∴ x = 0 or x = 8
y = `1 +- 2/3 (6)`
∴ y = 5 or y = – 3
z = `5 +- 1/3 (6)`
∴ z = 7 or z = 3
∴ B ≡ (0, 5, 7) or B ≡ (8, –3, 3)
Concept: Scalar Product of Vectors (Dot)
Is there an error in this question or solution?
APPEARS IN
Advertisement Remove all ads