The complex number z which satisfies the condition |i+zi-z| = 1 lies on ______. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
MCQ
Fill in the Blanks

The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.

Options

  • Circle x2 + y2 = 1

  • The x-axis

  • The y-axis

  • The line x + y = 1.

Advertisement Remove all ads

Solution

The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on the x-axis.

Explanation:

Given that: `|(i + z)/(i - z)|` = 1

Let z = x + yi

∴ `|(i + x + yi)/(i - x - yi)|` = 1

⇒ `|(x + (y + 1)i)/(-x - (y - 1)i)|` = 1

⇒ `|x + (y + 1)i| = |-x - (y - 1)i|`

⇒ `sqrt(x^2 + (y + 1)^2) = sqrt(x^2 + (y - 1)^2)`

⇒ x2 + (y + 1)2 = x2 + (y – 1)2

⇒ (y + 1)2 = (y – 1)2

⇒ y2 + 2y + 1 = y2 – 2y + 1

⇒ 2y = –2y

⇒ 4y = 0

⇒ x-axis.

Concept: Algebraic Operations of Complex Numbers
  Is there an error in this question or solution?

APPEARS IN

NCERT Mathematics Exemplar Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Exercise | Q 45 | Page 96

Video TutorialsVIEW ALL [1]

Share
Notifications

View all notifications


      Forgot password?
View in app×