The Bob of a Pendulum at Rest is Given a Sharp Hit to Impart a Horizontal Velocity √ 10 Gl , Where L is the Length of the Pendulum. Find the Tension in the String When - Physics

Numerical

The bob of a pendulum at rest is given a sharp hit to impart a horizontal velocity  $\sqrt{10 \text{ gl }}$, where l is the length of the pendulum. Find the tension in the string when (a) the string is horizontal, (b) the bob is at its highest point and (c) the string makes an angle of 60° with the upward vertical.

Solution

(a) Let the velocity at B be  $\text{v}_1$ .

$\frac{1}{2}\text{ m}\nu^2 = \frac{1}{2}\text{m} v_1^2 + \text{mgl}$
$\Rightarrow \frac{1}{2}\text{m} \left( 10 \text{gl} \right) = \frac{1}{2}\text{m} \nu_1^2 + \text{mgl}$
$\nu_1^2 = 8 \text{gl}$

So, the tension in the string at the horizontal position,

$\text{ T }= \frac{\text{ m} \nu^2}{\text{ R}} = \text{ m }\frac{8 \text{ gl} }{\text{l}}$

$= 8 \text{mg}$

(b) Let the velocity at C be $\text{v}_2$ .

$\frac{1}{2}\text{ m }\nu^2 = \frac{1}{2}\text{ m }\nu_2^2 + \text{ mg (2l)}$

$\Rightarrow \frac{1}{2}\text{m} 10 \text{ gl } = \frac{1}{2}\text{ m }\nu_2^2 + 2\text{ mgl }$
$\Rightarrow \nu_2^2 = 6 \text{ gl }$

So, the tension in the string is given by $T_C = \frac{\text{mv}_2^2}{\text{l}} - \text{mg = 5 mg}$

(c) Let the velocity at point D be $\nu_4$ .

Again,

$\frac{1}{2}\text{m} \nu^2 = \frac{1}{2}\text{m} \nu_3^2 + \text{mgl} \left( 1 + \cos 60^\circ\right)$

$\Rightarrow \nu_3^2 = 7 \text{gl}$

So, the tension in the string,

$\text{T}_\text{D} = \frac{\text{m} \nu_3^2}{\text{l}} - \text{mg} \cos 60^\circ$
$= \text{m}\frac{\left( 7 \text{gl} \right)}{\text{l}} - 0 . 5 \text{mg}$
$= 7 \text{ mg - 0 . 5 mg }$
$= 6 . 5 \text{ mg}$

Is there an error in this question or solution?

APPEARS IN

HC Verma Class 11, 12 Concepts of Physics 1
Chapter 8 Work and Energy
Q 53 | Page 136