The average of Laspeyre’s and Paasche’s Price Index Numbers is called ______ Price Index Number - Mathematics and Statistics

Advertisements
Advertisements
Fill in the Blanks

The average of Laspeyre’s and Paasche’s Price Index Numbers is called ______ Price Index Number

Advertisements

Solution

Dorbish-Bowley’s

Concept: Construction of Index Numbers - Weighted Aggregate Method
  Is there an error in this question or solution?
Chapter 2.5: Index Numbers - Q.2

RELATED QUESTIONS

Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall - Edgeworth’s Price index numbers.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 9 20 8
II 20 5 30 4
III 30 7 50 5
IV 40 8 60 6

If P01(L) = 90 and P01(P) = 40, find P01(D – B) and P01(F).


Given that Laspeyre’s and Dorbish-Bowley’s Price Index Numbers are 160.32 and 164.18 respectively, find Paasche’s Price Index Number.


If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers.


Choose the correct alternative :

Fisher’s Price Number is given by


Choose the correct alternative :

Marshall-Edgeworth’s Price Index Number is given by


Laspeyre’s Price Index Number is given by _______.


Fill in the blank :

Paasche’s Price Index Number is given by _______.


State whether the following is True or False :

`sqrt(("p"_1"q"_0)/(sum"p"_0"q"_0)) xx sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100` is Fisher’s Price Index Number.


Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base year Current year
  Price
p0
Quantity
q0
price
p1
Quantity
q1
A 20 18 30 15
B 25 8 28 5
C 32 5 40 7
D 12 10 18 10

Solve the following problem :

Calculate Dorbish-Bowley’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 11 28
II 9 25 12 22
III 10 15 13 11

Solve the following problem :

Calculate Walsh’s Price Index Number for the following data.

Commodity Base year Current year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solve the following problem :

Find x if Paasche’s Price Index Number is 140 for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 20 8 40 7
B 50 10 60 10
C 40 15 60 x
D 12 15 15 15

Solve the following problem :

If `sum"p_"0"q"_0 = 120, sum "p"_0"q"_1 = 160, sum "p"_1"q"_1 = 140, and sum "p"_1"q"+0` = 200, find Laspeyre’s, Paasche’s Dorbish-Bowley’s and Marshall Edgeworth’s Price Index Number.


Choose the correct alternative:

The formula P01 = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is for


Choose the correct alternative:

Walsh's Price Index Number is given by


Choose the correct alternative:

Fisher’s Price Index Number is


Fisher's Price Index Number is given by ______.


Marshall-Edgeworth's Price Index Number is given by ______


State whether the following statement is True or False:

Walsh’s Price Index Number is given by `(sum"p"_1sqrt("q"_0"q"_1))/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`


State whether the following statement is True or False:

`(sum"p"_0sqrt("q"_0 + "q"_1))/(sum"p"_1sqrt("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth Price Index Number


Calculate Marshall-Edgeworth Price Index Number for following.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 8 20 11 15
B 7 10 12 10
C 3 30 5 25
D 2 50 4 35

Given P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320, Find P01(L)


Find the missing price if Laspeyre’s and Paasche’s Price Index Numbers are equal for following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 1 10 2 5
B 1 12

If `sum"p"_0"q"_0` = 150, `sum"p"_0"q"_1` = 250, `sum"p"_1"q"_1` = 375 and P01(L) = 140. Find P01(M-E)


If P01 (L) = 121, P01 (P) = 100, then P01 (F) = ______.


Share
Notifications



      Forgot password?
Use app×