Advertisement
Advertisement
Advertisement
Sum
The area of an equilateral triangle is numerically equal to its perimeter. Find its perimeter correct to 2 decimal places.
Advertisement
Solution
Let each side of the equilateral triangle = x
∴ Its area = `sqrt(3)/4 x^2`
Area perimeter = 3x
By the given condition = `sqrt(3)/4 x^2 = 3x`
`x^2 = 3x xx 4/sqrt(3)`
`x^2 = (3x xx 4 xx sqrt(3))/(sqrt(3) xx sqrt(3)) = (3x xx 4 xx sqrt(3))/3 = 4xsqrt(3)`
⇒ `x^2 = sqrt(3) (4x) ⇒ x = 4sqrt(3)` [∵ x ≠ 0]
∴ Perimeter = `12sqrt(3)` units
= 12 (1.732) = 20.784 = 20.78 units
Concept: Perimeter of Triangles
Is there an error in this question or solution?