The area bounded by the parabola x2 = 9y and the lines y = 4 and y = 9 in the first quadrant is ______ - Mathematics and Statistics

Advertisements
Advertisements
Fill in the Blanks

The area bounded by the parabola x2 = 9y and the lines y = 4 and y = 9 in the first quadrant is ______

Advertisements

Solution

38 sq.units

  Is there an error in this question or solution?
Chapter 1.7: Application of Definite Integration - Q.1 (C)

RELATED QUESTIONS

Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2 + y2 = 32.


Using integration find the area of the triangle formed by positive x-axis and tangent and normal of the circle

`x^2+y^2=4 at (1, sqrt3)`


Find the area of the region bounded by the ellipse  `x^2/16 + y^2/9 = 1`


Find the area of the region bounded by the ellipse `x^2/4 + y^2/9 = 1`


Find the area of the region in the first quadrant enclosed by x-axis, line x = `sqrt3` y and the circle x2 + y2 = 4.


Find the area of the smaller part of the circle x2 + y2 = a2 cut off by the line  `x = a/sqrt2`


The area between x = y2 and x = 4 is divided into two equal parts by the line x = a, find the value of a.


Find the area of the region bounded by the curve y2 = 4x and the line x = 3


Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines x = 0 and = 2 is

A. π

B. `pi/2`

C. `pi/3`

D. `pi/4`


Area of the region bounded by the curve y2 = 4xy-axis and the line y = 3 is

A. 2

B. 9/4

C. 9/3

D. 9/2


Find the area under the given curves and given lines:

y = x2x = 1, x = 2 and x-axis


Find the area under the given curves and given lines:

y = x4x = 1, x = 5 and x –axis


Sketch the graph of y = |x + 3| and evaluate `int_(-6)^0 |x + 3|dx`


Find the area enclosed by the parabola 4y = 3x2 and the line 2y = 3x + 12


Find the area of the smaller region bounded by the ellipse `x^2/a^2 + y^2/b^2 = 1` and the line `x/a + y/b =   1`


Find the area of the region enclosed by the parabola x2 = y, the line y = x + 2 and x-axis


Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).


Find the area of the region {(x, y) : y2 ≤ 4x, 4x2 + 4y2 ≤ 9}


Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (4 , 1), B (6, 6) and C (8, 4).


Find the area enclosed between the parabola 4y = 3x2 and the straight line 3x - 2y + 12 = 0.


Find the area bounded by the circle x2 + y2 = 16 and the line `sqrt3 y = x` in the first quadrant, using integration.


Find the equation of an ellipse whose latus rectum is 8 and eccentricity is `1/3`


Using integration, find the area of the region {(x, y) : x2 + y2 ≤ 1 ≤ x + y}.


Draw a rough sketch and find the area bounded by the curve x2 = y and x + y = 2.


Find the area of the region. 

{(x,y) : 0 ≤ y ≤ x, 0 ≤ y ≤ x + 2 ,-1 ≤ x ≤ 3} .


Choose the correct alternative :

Area of the region bounded by the curve x2 = y, the X-axis and the lines x = 1 and x = 3 is _______.


Area of the region bounded by x2 = 16y, y = 1 and y = 4 and the Y-axis, lying in the first quadrant is _______.


Fill in the blank :

Area of the region bounded by x2 = 16y, y = 1, y = 4 and the Y-axis, lying in the first quadrant is _______.


The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.


State whether the following is True or False :

The area bounded by the curve x = g (y), Y-axis and bounded between the lines y = c and y = d is given by `int_"c"^"d"x*dy = int_(y = "c")^(y = "d") "g"(y)*dy` 


State whether the following is True or False :

The area bounded by the curve y = f(x), X-axis and lines x = a and x = b is `|int_"a"^"b" f(x)*dx|`.


Choose the correct alternative:

Area of the region bounded by the curve y = x3, x = 1, x = 4 and the X-axis is ______


Area of the region bounded by the curve x = y2, the positive Y axis and the lines y = 1 and y = 3 is ______


Choose the correct alternative:

Area of the region bounded by the curve x2 = 8y, the positive Y-axis lying in the first quadrant and the lines y = 4 and y = 9 is ______


State whether the following statement is True or False:

The area of portion lying below the X axis is negative


State whether the following statement is True or False:

The area bounded by the curve y = f(x) lies on the both sides of the X-axis is `|int_"a"^"b" "f"(x)  "d"x| + |int_"b"^"c" "f"(x)  "d"x|`


The area of the shaded region bounded by two curves y = f(x), and y = g(x) and X-axis is `int_"a"^"b" "f"(x) "d"x + int_"a"^"b" "g"(x)  "d"x`


The area of the region bounded by the curve y2 = 4x, the X axis and the lines x = 1 and x = 4 is ______


The area of the region bounded by the curve y2 = x and the Y axis in the first quadrant and lines y = 3 and y = 9 is ______


The area of the region bounded by y2 = 25x, x = 1 and x = 2 the X axis is ______


Find the area of the region bounded by the parabola y2 = 25x and the line x = 5


Find the area of the region bounded by the curve y = `sqrt(9 - x^2)`, X-axis and lines x = 0 and x = 3


Find the area of the region bounded by the curve y = `sqrt(2x + 3)`, the X axis and the lines x = 0 and x = 2


Find the area of the region bounded by the curve 4y = 7x + 9, the X-axis and the lines x = 2 and x = 8


Find area of the region bounded by 2x + 4y = 10, y = 2 and y = 4 and the Y-axis lying in the first quadrant


Find the area of the region bounded by the curve y = `sqrt(36 - x^2)`, the X-axis lying in the first quadrant and the lines x = 0 and x = 6


The area enclosed between the curve y = loge(x + e) and the coordinate axes is ______.


`int_0^log5 (e^xsqrt(e^x - 1))/(e^x + 3)` dx = ______ 


The ratio in which the area bounded by the curves y2 = 8x and x2 = 8y is divided by the line x = 2 is ______ 


`int "e"^x ((sqrt(1 - x^2) * sin^-1 x + 1)/sqrt(1 - x^2))`dx = ________.


Area bounded by the curve xy = 4, X-axis between x = 1, x = 5 is ______.


Area enclosed between the curve y2(4 - x) = x3 and line x = 4 above X-axis is ______.


Area under the curve `y=sqrt(4x+1)` between x = 0 and x = 2 is ______.


The area enclosed by the parabolas x = y2 - 1 and x = 1 - y2 is ______.


Which equation below represents a parabola that opens upward with a vertex at (0, – 5)?


The equation of curve through the point (1, 0), if the slope of the tangent to t e curve at any point (x, y) is `(y - 1)/(x^2 + x)`, is


Equation of a common tangent to the circle, x2 + y2 – 6x = 0 and the parabola, y2 = 4x, is:


If a2 + b2 + c2 = – 2 and f(x) = `|(1 + a^2x, (1 + b^2)x, (1 + c^2)x),((1 + a^2)x, 1 + b^2x, (1 + c^2)x),((1 + a^2)x, (1 + b^2)x, 1 + c^2x)|` then f(x) is a polynomial of degree


The area included between the parabolas y2 = 4a(x +a) and y2 = 4b(x – a), b > a > 0, is


The area of the circle `x^2 + y^2 = 16`, exterior to the parabola `y = 6x`


The area of the region bounded by the curve y = x2, x = 0, x = 3, and the X-axis is ______.


The area (in sq.units) of the part of the circle x2 + y2 = 36, which is outside the parabola y2 = 9x, is ______.


The area of the region bounded by the curve y = sin x and the x-axis in [–π, π] is ______.


Area in first quadrant bounded by y = 4x2, x = 0, y = 1 and y = 4 is ______.


Area bounded by the curves y = `"e"^(x^2)`, the x-axis and the lines x = 1, x = 2 is given to be α square units. If the area bounded by the curve y = `sqrt(ℓ "n"x)`, the x-axis and the lines x = e and x = e4 is expressed as (pe4 – qe – α), (where p and q are positive integers), then (p + q) is ______.


If area of the region bounded by y ≥ cot( cot–1|In|e|x|) and x2 + y2 – 6 |x| – 6|y| + 9 ≤ 0, is λπ, then λ is ______.


The area bounded by the x-axis and the curve y = 4x – x2 – 3 is ______.


Area bounded by y = sec2x, x = `π/6`, x = `π/3` and x-axis is ______.


The figure shows as triangle AOB and the parabola y = x2. The ratio of the area of the triangle AOB to the area of the region AOB of the parabola y = x2 is equal to ______.


The area bounded by the curve, y = –x, X-axis, x = 1 and x = 4 is ______.


If the area enclosed by y = f(x), X-axis, x = a, x = b and y = g(x), X-axis, x = a, x = b are equal, then f(x) = g(x).


The area enclosed by the parabola x2 = 4y and its latus rectum is `8/(6m)` sq units. Then the value of m is ______.


Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0,y = 2 and y = 4.


Share
Notifications



      Forgot password?
Use app×