The adjacent sides of a parallelogram ABCD measure 34 cm and 20 cm, and the diagonal AC measures 42 cm. Find the area of the parallelogram.
Solution
Given that adjacent sides of a parallelogram ABCD measure 34 cm and 20 cm, and the diagonal AC measures 42 cm.
Area of parallelogram = Area of ΔADC + area of ΔABC
[β΅ Diagonal of a parallelogram divides into two congruent triangles]
= 2 ×[π΄πππ ππ Δπ΄π΅πΆ]
Now for Area of ΔABC
Let 2s = AB + BC + CA [β΅ Perimeter of ΔABC]
`⇒S=1/2(AB+BC+CA)`
`=S=1/2(34+20+42)`
`=1/2=(96)=48cm`
∴Area of ΔABC =`sqrt(s(s-ab))`
`=sqrt(48(48-34)(48-20)(48-42))`
`=sqrt(48(14)(28)(6))=336 cm^2`
∴π΄πππ ππ πππππππππππππ π΄π΅πΆπ·=2[π΄πππ ππ Δπ΄π΅πΆ]=2×336=`672 cm^2`