Advertisement Remove all ads

Tell the Odd One Out. Give Proper Explanation.Loud Speaker, Microphone, Electric Motor, Magnet. - Science and Technology 1

Explain the construction and working of the following. Draw a neat diagram and label it.

Electric motor

Advertisement Remove all ads


Motor principle: The basic principle on which the electric motor works is the magnetic effect of current. A current carrying rectangular coil starts rotating when placed in a magnetic field. 

The given figure illustrates the internal parts of a simple electric motor. A motor consists of a rectangular coil MNST of insulated copper wire. The coil is placed between two magnetic poles such that the magnetic field acts normal on lengths MN and ST. The coil is connected with two carbon brushes at points A and B respectively. The inner sides of these carbon brushes are in contact with half rings C and D, which are insulated and in contact with an axle (not shown in the figure).

Working: When a current is allowed to flow through the coil MNST by closing the switch, the coil starts rotating anti-clockwise. This happens because a downward force acts on length MN and at the same time, an upward force acts on length ST. As a result, the coil rotates anti-clockwise.

The current in length MN flows from M to N, and magnetic field acts from left to right normal to length MN. Hence, according to Fleming’s left hand rule, a downward force acts on length MN. Similarly, the current in length ST flows from S to T, and magnetic field acts from left to right normal to its length. Hence, an upward force acts on length ST. These two forces cause the coil MNST and the axle to rotate anti-clockwise.
After half-rotation, the position of length MN and ST get interchanged. Simultaneously, half ring D comes in contact with brush A and half ring C comes in contact with brush B respectively. Hence, the direction of current in coil MNST gets reversed and flows through TSNM.
An electric device that reverses the direction of current in a circuit is called a commutator. Thus, the split ring acts as a commutator of the electric motor. Now, due to the reverse direction of current in lengths MN and ST, an upward force acts on length MN, which pushes it up and a downward force acts on length ST, which pushes it down. As a result, the coil MNST further rotates anti-clockwise. The reversal of the current through the coil MNST repeats at each half-rotation, while its anti-clockwise rotation continues.

Concept: Energy Transfer in an Electric Circuit
  Is there an error in this question or solution?
Advertisement Remove all ads


Advertisement Remove all ads
Advertisement Remove all ads

View all notifications

      Forgot password?
View in app×