CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point X 2 a 2 + Y 2 B 2 = 1 at ( X 1 , Y 1 ) ? - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?

Solution

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]

\[\text { Differentiating both sides w.r.t.x }, \]

\[\frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{2y}{b^2}\frac{dy}{dx} = \frac{- 2x}{a^2}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- x b^2}{y a^2}\]

\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{- x_1 b^2}{y_1 a^2}\]

\[\text { Equation of tangent is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - y_1 = \frac{- x_1 b^2}{y_1 a^2}\left( x - x_1 \right)\]

\[ \Rightarrow y y_1 a^2 - {y_1}^2 a^2 = - x x_1 b^2 + {x_1}^2 b^2 \]

\[ \Rightarrow x x_1 b^2 + y y_1 a^2 = {x_1}^2 b^2 + {y_1}^2 a^2 . . . \left( 1 \right)\]

\[\text { Since }\left( x_1 , y_1 \right)\text { lies on the given curve.Therefore},\]

\[\frac{{x_1}^2}{a^2} + \frac{{y_1}^2}{b^2} = 1\]

\[ \Rightarrow \frac{{x_1}^2 b^2 + {y_1}^2 a^2}{a^2 b^2} = 1\]

\[ \Rightarrow {x_1}^2 b^2 + {y_1}^2 a^2 = a^2 b^2 \]

\[\text { Substituting this in (1), we get }\]

\[x x_1 b^2 + y y_1 a^2 = a^2 b^2 \]

\[ {\text { Dividing this by } a}^2 b^2 ,\]

\[\frac{x x_1}{a^2} + \frac{y y_1}{b^2} = 1\]

\[\text { Equation of normal is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - y_1 = \frac{y_1 a^2}{x_1 b^2}\left( x - x_1 \right)\]

\[ \Rightarrow y x_1 b^2 - x_1 y_1 b^2 = x y_1 a^2 - x_1 y_1 a^2 \]

\[ \Rightarrow x y_1 a^2 - y x_1 b^2 = x_1 y_1 a^2 - x_1 y_1 b^2 \]

\[ \Rightarrow x y_1 a^2 - y x_1 b^2 = x_1 y_1 \left( a^2 - b^2 \right)\]

\[\text { Dividing by } x_1 y_1 \]

\[\frac{a^2 x}{x_1} - \frac{b^2 y}{y_1} = a^2 - b^2\]

  Is there an error in this question or solution?
Solution for question: Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point X 2 a 2 + Y 2 B 2 = 1 at ( X 1 , Y 1 ) ? concept: Tangents and Normals. For the courses CBSE (Science), CBSE (Commerce), CBSE (Arts), PUC Karnataka Science
S
View in app×