PUC Karnataka Science Class 12Department of Pre-University Education, Karnataka
Share

Books Shortlist

Solution for Find the Equation of the Tangent to the Curve X = Sin 3t, Y = Cos 2t at T = π 4 ? - PUC Karnataka Science Class 12 - Mathematics

Question

Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

$t = \frac{\pi}{4}$ ?

Solution

$x = \sin 3t \text { and } y = \cos 2t$

$\frac{dx}{dt} = 3 \cos 3t \text { and } \frac{dy}{dt} = - 2 \sin 2t$

$\therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{- 2 \sin 2t}{3 \cos 3t}$

$\text { Slope of tangent },m= \left( \frac{dy}{dx} \right)_{t = \frac{\pi}{4}} =-\frac{- 2 \sin \left( \frac{\pi}{2} \right)}{3 \cos \left( \frac{3\pi}{4} \right)}=\frac{- 2}{\frac{- 3}{\sqrt{2}}}=\frac{2\sqrt{2}}{3}$

$x_1 = \sin \left( 3 \times \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}} \text { and }y_1 = \cos \left( 2 \times \frac{\pi}{4} \right) = 0$

$\text { So }, \left( x_1 , y_1 \right) = \left( \frac{1}{\sqrt{2}}, 0 \right)$

$\text { Equation of tangent is },$

$y - y_1 = m \left( x - x_1 \right)$

$\Rightarrow y - 0 = \frac{2\sqrt{2}}{3}\left( x - \frac{1}{\sqrt{2}} \right)$

$\Rightarrow 3y = 2\sqrt{2}x - 2$

$\Rightarrow 2\sqrt{2}x - 3y - 2 = 0$

Is there an error in this question or solution?
Solution Find the Equation of the Tangent to the Curve X = Sin 3t, Y = Cos 2t at T = π 4 ? Concept: Tangents and Normals.
S