PUC Karnataka Science Class 12Department of Pre-University Education, Karnataka
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Find the Equation of the Tangent to the Curve X = Sin 3t, Y = Cos 2t at T = π 4 ? - PUC Karnataka Science Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?

Solution

\[x = \sin 3t \text { and } y = \cos 2t\]

\[\frac{dx}{dt} = 3 \cos 3t \text { and } \frac{dy}{dt} = - 2 \sin 2t\]

\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{- 2 \sin 2t}{3 \cos 3t}\]

\[\text { Slope of tangent },m= \left( \frac{dy}{dx} \right)_{t = \frac{\pi}{4}} =-\frac{- 2 \sin \left( \frac{\pi}{2} \right)}{3 \cos \left( \frac{3\pi}{4} \right)}=\frac{- 2}{\frac{- 3}{\sqrt{2}}}=\frac{2\sqrt{2}}{3}\]

\[ x_1 = \sin \left( 3 \times \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}} \text { and }y_1 = \cos \left( 2 \times \frac{\pi}{4} \right) = 0\]

\[\text { So }, \left( x_1 , y_1 \right) = \left( \frac{1}{\sqrt{2}}, 0 \right)\]

\[\text { Equation of tangent is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 0 = \frac{2\sqrt{2}}{3}\left( x - \frac{1}{\sqrt{2}} \right)\]

\[ \Rightarrow 3y = 2\sqrt{2}x - 2\]

\[ \Rightarrow 2\sqrt{2}x - 3y - 2 = 0\]

  Is there an error in this question or solution?
Solution Find the Equation of the Tangent to the Curve X = Sin 3t, Y = Cos 2t at T = π 4 ? Concept: Tangents and Normals.
S
View in app×