Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11

# tan √ x - Mathematics

$\tan \sqrt{x}$

#### Solution

$Let f(x) = \tan\sqrt{x}$
$\text{ Thus, we have }:$
$(x + h) = \tan\sqrt{x + h}$
$\frac{d}{dx}(f(x)) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$
$= \lim_{h \to 0} \frac{\tan\sqrt{x + h} - \tan\sqrt{x}}{h}$
$= \lim_{h \to 0} \frac{\sin \left( \sqrt{x + h} - \sqrt{x} \right)}{h \cos\sqrt{x + h} \cos \sqrt{x}} \left[ \because \tan A - \tan B = \frac{\sin(A - B)}{\cos A \cos B} \right]$
$= \lim_{h \to 0} \frac{\sin \left( \sqrt{x + h} - \sqrt{x} \right)}{\left( x + h - x \right) \cos\sqrt{x + h} \cos \sqrt{x}}$
$= \lim_{h \to 0} \frac{\sin \left( \sqrt{x + h} - \sqrt{x} \right)}{\left( \sqrt{x + h} - \sqrt{x} \right)\left( \sqrt{x + h} - \sqrt{x} \right)\cos\sqrt{x + h} \cos \sqrt{x}}$
$= \lim_{h \to 0} \frac{\sin \left( \sqrt{x + h} - \sqrt{x} \right)}{\left( \sqrt{x + h} - \sqrt{x} \right)} . \lim_{h \to 0} \frac{1}{\left( \sqrt{x + h} + \sqrt{x} \right)\cos\sqrt{x + h}\cos\sqrt{x}} \left[ \because \lim_{h \to 0} \frac{\sin\left( \sqrt{x + h} - \sqrt{x} \right)}{\sqrt{x + h} - \sqrt{x}} = 1 \right]$
$= 1 \times \frac{1}{2\sqrt{x}\cos\sqrt{x}\cos\sqrt{x}}$
$= \frac{1}{2\sqrt{x}} \sec^2 \sqrt{x}$

Concept: The Concept of Derivative - Algebra of Derivative of Functions
Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.2 | Q 5.3 | Page 26