Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

√ Tan X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

\[\sqrt{\tan x}\]

Advertisement Remove all ads

Solution

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{\tan\left( x + h \right)} - \sqrt{\tan x}}{h} \times \frac{\sqrt{\tan\left( x + h \right)} + \sqrt{\tan x}}{\sqrt{\tan\left( x + h \right)} + \sqrt{\tan x}}\]
\[ = \lim_{h \to 0} \frac{\tan\left( x + h \right) - \tan x}{h\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right)}\]
\[ = \lim_{h \to 0} \frac{\frac{\sin \left( x + h \right)}{\cos \left( x + h \right)} - \frac{\sin x}{\cos x}}{h\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right)}\]
\[ = \lim_{h \to 0} \frac{\sin \left( x + h \right) \cos x - \cos(x + h) \sin x}{h\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right) \cos \left( x + h \right) \cos x}\]
\[ = \lim_{h \to 0} \frac{\sin h}{h\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right) \cos \left( x + h \right) \cos x} \]
\[ = \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right) \cos \left( x + h \right) \cos x}\]
\[ = \left( 1 \right)\frac{1}{2 \sqrt{\tan x} \cos^2 x}\]
\[ = \frac{\sec^2 x}{2 \sqrt{\tan x}}\]

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.2 | Q 4.4 | Page 26

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×