Advertisement Remove all ads

∫ Tan 3 X D X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
\[\int \tan^3 x\ dx\]
Advertisement Remove all ads

Solution

\[\text{ Let I } = \int \tan^3 x \text{ dx }\]
\[ = \int\tan x \cdot \tan^2 x\text{  dx }\]
\[ = \int\tan x \left( \sec^2 x - 1 \right)dx\]
\[ = \int\tan x \cdot \sec^2 x \text{ dx} - \int\text{ tan x dx }\]
\[\text{ Putting   tan x }= t\ in\ the\ Ist\ integral\]
\[ \Rightarrow \text{ sec}^2 \text{ x dx }= dt\]
\[ \therefore I = \int t \cdot dt - \int\text{ tan  x  dx }\]
\[ = \frac{t^2}{2} - \text{ ln }\left| \sec x \right| + C\]
\[ = \frac{\tan^2 x}{2} - \text{ ln }\left| \sec x \right| + C .............\left[ \because t = \tan x \right]\]

Concept: Indefinite Integral Problems
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 12 Maths
Chapter 19 Indefinite Integrals
Revision Excercise | Q 28 | Page 203

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×