# ∫ ( Tan − 1 X 2 ) X D X - Mathematics

Sum
$\int\left( \tan^{- 1} x^2 \right) x\ dx$

#### Solution

Let  I  =
$\int$ (tan–1 x2x dx
Putting x2 = t
⇒​ 2x dx = dt
$\Rightarrow \text{ x dx }= \frac{dt}{2}$
$\therefore I = \frac{1}{2}\int 1_{II} . \tan^{- 1_I} t . dt$
$= \frac{1}{2} \tan^{- 1} t\int1 \text{ dt }- \int\left\{ \frac{d}{dt}\left( \tan^{- 1} t \right)\int1 dt \right\}dt$
$= \frac{1}{2} \left[ \tan^{- 1} t . t - \int \frac{t}{1 + t^2}dt \right]$
$\text{ Now putting }\ 1 + t^2 = p$
$\Rightarrow \text{ 2t dt }= dp$
$\Rightarrow \text{ t dt} = \frac{dp}{2}$
$\therefore I = \frac{1}{2}t . \tan^{- 1} t - \frac{1}{2}\int \frac{t dt}{1 + t^2}$
$= \frac{t . \tan^{- 1} t}{2} - \frac{1}{2 x^2} \int \frac{dp}{p}$
$= \frac{t . \tan^{- 1} t}{2} - \frac{1}{4}\ln p + C$
$= \frac{x^2 . \tan^{- 1} x^2}{2} - \frac{1}{4} \text{ ln }\left| 1 + x^4 \right| + C \left[ \because p = 1 + t^2 \right]$

Concept: Indefinite Integral Problems
Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 12 Maths
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 51 | Page 134