Advertisement Remove all ads

Suppose that all sides of a quadrilateral are equal in length and opposite sides are parallel. Use vector methods to show that the diagonals are perpendicular. - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Suppose that all sides of a quadrilateral are equal in length and opposite sides are parallel. Use vector methods to show that the diagonals are perpendicular.

Advertisement Remove all ads

Solution

Let ABCD be a quadrilateral in which

`|bar"AB"| = |bar"BC"| = |bar"CD"| = |bar"DA"|`   ....(1)

and AB || DC and AD || BC

∴ `bar"AB" = bar"DC"` and `bar"AD" = bar"BC"`    ...(2)

Now, `bar"AC" = bar"AB" + bar"BC"`

and `bar"BD" = bar"BA" + bar"AD" = - bar"AB" + bar"BC"`    ...[By(2)]

`= bar"BC" - bar"AB"`

∴ `bar"AC".bar"BD" = (bar"AB" + bar"BC").(bar"BC" - bar"AB")`

`= bar"AB".(bar"BC" - bar"AB") + bar"BC" . (bar"BC" - bar"AB")`

`= bar"AB".bar"BC" - bar"AB".bar"AB" + bar"BC".bar"BC" - bar"BC".bar"AB"`

`= |bar"BC"|^2 - |bar"AB"|^2`   ....`[∵ bar"AB".bar"BC" = bar"BC".bar"AB"]`

= 0      ...[By(1)]

∵ `bar"AC", bar"BD"` are non-zero vectors

∴ `bar"AC"` is perpendicular to `bar"BD"`

Hence, the diagonals are perpendicular.

Concept: Vector Product of Vectors (Cross)
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×