CBSE Class 10CBSE
Share
Notifications

View all notifications

In an A.P., if S5 + S7 = 167 and S10=235, then find the A.P., where Sn denotes the sum of its first n terms. - CBSE Class 10 - Mathematics

Login
Create free account


      Forgot password?

Question

In an A.P., if S5 + S7 = 167 and S10=235, then find the A.P., where Sn denotes the sum of its first n terms.

Solution

`S_5+ S_7= 167 and S 235_10=235`

`Now S_n=n/2{2a+(n-1)d}`

`S_5+S_7=167`

5/2{2a+4d}+7/2{2a+6d}=167

12a+31d=167.......(i)

`alsoS_10=235`

10/2{2a+9d}=235

2a+9d=47 .........(ii)

Multiplying equation (2) by 6, we get

   12a + 54d =282 .....(3)

(-)12a+31d=167

-        -       -

________________

          23d=115

therefore d=5

Substituting value of d in (2), we have

2a+9(5)=47

2a+45= 47

2a=2

a=1

Thus, the given A.P. is 1, 6, 11, 16,..........

  Is there an error in this question or solution?
Solution In an A.P., if S5 + S7 = 167 and S10=235, then find the A.P., where Sn denotes the sum of its first n terms. Concept: Sum of First n Terms of an AP.
S
View in app×