Advertisement Remove all ads

(Street Plan) : A city has two main roads which cross each other at the centre of the city. These two roads are along the North-South direction and East-West direction. All the other streets of the city run parallel to these roads and are 200 m apart - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

(Street Plan) : A city has two main roads which cross each other at the centre of the city. These two roads are along the North-South direction and East-West direction.

All the other streets of the city run parallel to these roads and are 200 m apart. There are 5 streets in each direction. Using 1cm = 200 m, draw a model of the city on your notebook. Represent the roads/streets by single lines.

There are many cross- streets in your model. A particular cross-street is made by two streets, one running in the North - South direction and another in the East - West direction. Each cross street is referred to in the following manner : If the 2nd street running in the North - South direction and 5th in the East - West direction meet at some crossing, then we will call this cross-street (2, 5). Using this convention, find:-

(i) how many cross - streets can be referred to as (4, 3).

(ii) how many cross - streets can be referred to as (3, 4).

Advertisement Remove all ads

Solution

Both the cross-streets are marked in the above figure. It can be observed that there is only one cross-street which can be referred as (4, 3), and again, only one which can be referred as (3, 4).

Concept: Coordinate Geometry
  Is there an error in this question or solution?

APPEARS IN

NCERT Class 9 Maths
Chapter 3 Coordinate Geometry
Exercise 3.1 | Q 2 | Page 53

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×