State whether the following statement is True or False: Regression coefficient of x on y is the slope of regression line of x on y - Mathematics and Statistics

Advertisements
Advertisements
MCQ
True or False

State whether the following statement is True or False:

Regression coefficient of x on y is the slope of regression line of x on y

Options

  • True

  • False

Advertisements

Solution

False

Concept: Properties of Regression Coefficients
  Is there an error in this question or solution?
Chapter 2.3: Linear Regression - Q.2

RELATED QUESTIONS

For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of X for Y = 25.


From the data of 7 pairs of observations on X and Y, following results are obtained.

∑(xi - 70) = - 35,  ∑(yi - 60) = - 7,

∑(xi - 70)2 = 2989,    ∑(yi - 60)2 = 476, 

∑(xi - 70)(yi - 60) = 1064

[Given: `sqrt0.7884` = 0.8879]

Obtain

  1. The line of regression of Y on X.
  2. The line regression of X on Y.
  3. The correlation coefficient between X and Y.

You are given the following information about advertising expenditure and sales.

  Advertisement expenditure
(₹ in lakh) (X)
Sales (₹ in lakh) (Y)
Arithmetic Mean 10 90
Standard Mean 3 12

Correlation coefficient between X and Y is 0.8

  1. Obtain the two regression equations.
  2. What is the likely sales when the advertising budget is ₹ 15 lakh?
  3. What should be the advertising budget if the company wants to attain sales target of ₹ 120 lakh?

Bring out the inconsistency in the following:

bYX + bXY = 1.30 and r = 0.75 


Bring out the inconsistency in the following:

bYX = 2.6 and bXY = `1/2.6`


For a certain bivariate data

  X Y
Mean 25 20
S.D. 4 3

And r = 0.5. Estimate y when x = 10 and estimate x when y = 16


Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from respective means is 136 and 150. The sum of the product of deviations from respective means is 123. Obtain the equation of the line of regression of X on Y.


For bivariate data, the regression coefficient of Y on X is 0.4 and the regression coefficient of X on Y is 0.9. Find the value of the variance of Y if the variance of X is 9.


The equations of two regression lines are
2x + 3y − 6 = 0
and 3x + 2y − 12 = 0 Find 

  1. Correlation coefficient
  2. `sigma_"X"/sigma_"Y"`

Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.


The two regression lines between height (X) in inches and weight (Y) in kgs of girls are,
4y − 15x + 500 = 0
and 20x − 3y − 900 = 0
Find the mean height and weight of the group. Also, estimate the weight of a girl whose height is 70 inches.


Find the line of regression of X on Y for the following data:

n = 8, `sum(x_i - bar x)^2 = 36, sum(y_i - bar y)^2 = 44, sum(x_i - bar x)(y_i - bar y) = 24`


Choose the correct alternative:

If the regression equation X on Y is 3x + 2y = 26, then bxy equal to 


State whether the following statement is True or False:

If byx = 1.5 and bxy = `1/3` then r = `1/2`, the given data is consistent


State whether the following statement is True or False:

The following data is not consistent: byx + bxy =1.3 and r = 0.75


If n = 5, ∑xy = 76, ∑x2 = ∑y2 = 90, ∑x = 20 = ∑y, the covariance = ______


The value of product moment correlation coefficient between x and x is ______


If u = `(x - 20)/5` and v = `(y - 30)/4`, then byx = ______


The equations of two lines of regression are 3x + 2y – 26 = 0 and 6x + y – 31 = 0. Find variance of x if variance of y is 36


Given the following information about the production and demand of a commodity.

Obtain the two regression lines:

  Production
(X)
Demand
(Y)
Mean 85 90
Variance 25 36

Coefficient of correlation between X and Y is 0.6. Also estimate the demand when the production is 100 units.


The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Find the value of the correlation coefficient


x y `x - barx` `y - bary` `(x - barx)(y - bary)` `(x - barx)^2` `(y - bary)^2`
1 5 – 2 – 4 8 4 16
2 7 – 1 – 2 `square` 1 4
3 9 0 0 0 0 0
4 11 1 2 2 4 4
5 13 2 4 8 1 16
Total = 15 Total = 45 Total = 0 Total = 0 Total = `square` Total = 10 Total = 40

Mean of x = `barx = square`

Mean of y = `bary = square`

bxy = `square/square`

byx = `square/square`

Regression equation of x on y is `(x - barx) = "b"_(xy)  (y - bary)`

∴ Regression equation x on y is `square`

Regression equation of y on x is `(y - bary) = "b"_(yx)  (x - barx)`

∴ Regression equation of y on x is `square`


The regression equation of y on x is 2x – 5y + 60 = 0

Mean of x = 18

`2 square -  5 bary + 60` = 0

∴ `bary = square`

`sigma_x : sigma_y` = 3 : 2

∴ byx = `square/square`

∴ byx = `square/square`

∴ r = `square`


bxy . byx = ______.


The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.

  x y
Mean 53 142
Variance 130 165

`sum(x_i - barx)(y_i - bary)` = 1170


Share
Notifications



      Forgot password?
Use app×