State whether the following statement is True or False: Order and degree of differential equation are always positive integers. - Mathematics and Statistics

Advertisements
Advertisements
MCQ
True or False

State whether the following statement is True or False: 

Order and degree of differential equation are always positive integers.

Options

  • True

  • False

Advertisements

Solution

True

  Is there an error in this question or solution?
Chapter 1.8: Differential Equation and Applications - Q.3

RELATED QUESTIONS

Write the degree of the differential equation `x^3((d^2y)/(dx^2))^2+x(dy/dx)^4=0`


Order and degree of the differential equation `[1+(dy/dx)^3]^(7/3)=7(d^2y)/(dx^2)` are respectively 

(A) 2, 3

(B) 3, 2

(C) 7, 2

(D) 3, 7


Determine order and degree(if defined) of differential equation `(d^2y)/(dx^2)` = cos 3x + sin 3x


Determine order and degree(if defined) of differential equation y′ + y = ex


Determine order and degree(if defined) of differential equation  y″ + (y′)2 + 2y = 0


The order of the differential equation

`2x^2 (d^2y)/(dx^2) - 3 (dy)/(dx) + y = 0` is

(A) 2

(B) 1

(C) 0

(D) not defined


For differential equations given below, indicate its order and degree (if defined).

`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`


\[s^2 \frac{d^2 t}{d s^2} + st\frac{dt}{ds} = s\]

\[\sqrt{1 - y^2} dx + \sqrt{1 - x^2} dx = 0\]

\[5\frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x \sin \left( \frac{d^2 y}{d x^2} \right)\]

\[e^\frac{dy}{dx} = x + 1 ; y\left( 0 \right) = 3\]

Define order of a differential equation.


Define degree of a differential equation.


Write the degree of the differential equation x \[\left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + x^3 = 0\]

 


Write the degree of the differential equation \[x^3 \left( \frac{d^2 y}{d x^2} \right)^2 + x \left( \frac{dy}{dx} \right)^4 = 0\]


Write the degree of the differential equation \[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]


Write the degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x\sin\left( \frac{dy}{dx} \right)\]


The degree of the differential equation \[\frac{d^2 y}{d x^2} + e^\frac{dy}{dx} = 0\]


The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right) = y^3\], is


The order of the differential equation satisfying
\[\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)\] is


If p and q are the order and degree of the differential equation \[y\frac{dy}{dx} + x^3 \frac{d^2 y}{d x^2} + xy\] = cos x, then


Determine the order and degree (if defined) of the following differential equation:-

\[\left( \frac{ds}{dt} \right)^4 + 3s\frac{d^2 s}{d t^2} = 0\]


Determine the order and degree (if defined) of the following differential equation:-

(y"')2 + (y")3 + (y')4 + y5 = 0


Determine the order and degree (if defined) of the following differential equation:-

y" + (y')2 + 2y = 0


Determine the order and degree (if defined) of the following differential equation:-

y" + 2y' + sin y = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = x sin x              `xy'=y+xsqrt(x^2-y^2)`


Write the order and degree of the differential equation `((d^4"y")/(d"x"^4))^2 =  [ "x" + ((d"y")/(d"x"))^2]^3`.


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + "x"("dy"/"dx")` + y = 2 sin x


Determine the order and degree of the following differential equation:

`root(3)(1 +("dy"/"dx")^2) = ("d"^2"y")/"dx"^2`


Determine the order and degree of the following differential equation:

`(dy)/(dx) = (2sin x + 3)/(dy/dx)`


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + "dy"/"dx" + "x" = sqrt(1 + ("d"^3"y")/"dx"^3)`


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + ("dy"/"dx")^2 + 7"x" + 5 = 0`


Determine the order and degree of the following differential equation:

`(("d"^2"y")/"dx"^2)^2 + cos ("dy"/"dx") = 0`


Determine the order and degree of the following differential equation:

`[1 + (dy/dx)^2]^(3/2) = 8(d^2y)/dx^2`


Determine the order and degree of the following differential equation:

`(("d"^3"y")/"dx"^3)^(1/2) - ("dy"/"dx")^(1/3) = 20`


Determine the order and degree of the following differential equation:

`"x" + ("d"^2"y")/"dx"^2 = sqrt(1 + (("d"^2"y")/"dx"^2)^2)`


Choose the correct option from the given alternatives:

The order and degree of the differential equation `sqrt(1 + ("dy"/"dx")^2) = (("d"^2"y")/"dx"^2)^(3/2)` are respectively.


Determine the order and degree of the following differential equation:

`"dy"/"dx" = 3"y" + root(4)(1 + 5 ("dy"/"dx")^2)`


Determine the order and degree of the following differential equation:

`("d"^4"y")/"dx"^4 + sin ("dy"/"dx") = 0`


Determine the order and degree of the following differential equation:

`(("d"^3"y")/"dx"^3)^2 = root(5)(1 + "dy"/"dx")`


Determine the order and degree of the following differential equations.

`(d^4y)/dx^4 + [1+(dy/dx)^2]^3 = 0`


Determine the order and degree of the following differential equations.

`(y''')^2 + 2(y'')^2 + 6y' + 7y = 0`


Determine the order and degree of the following differential equations.

`dy/dx = 7 (d^2y)/dx^2`


Determine the order and degree of the following differential equations.

`((d^3y)/dx^3)^(1/6) = 9`


Choose the correct alternative.

The order and degree of `[ 1+ (dy/dx)^3]^(2/3) = 8 (d^3y)/dx^3` are respectively.


Fill in the blank:

Order and degree of a differential equation are always __________ integers.


Order and degree of a differential equation are always positive integers.


Find the order and degree of the following differential equation:

`x+ dy/dx = 1 + (dy/dx)^2`


Select and write the correct alternative from the given option for the question

The order and degree of `(("d"y)/("d"x))^3 - ("d"^3y)/("d"x^3) + y"e"^x` = 0 are respectively


Select and write the correct alternative from the given option for the question

The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively


State the degree of differential equation `"e"^((dy)/(dx)) + (dy)/(dx)` = x


The order and degree of `((dy)/(dx))^3 - (d^3y)/(dx^3) + ye^x` = 0 are ______.


Choose the correct alternative:

The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively


Order of highest derivative occurring in the differential equation is called the ______ of the differential equation


Order and degree of differential equation are always ______ integers


The power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any is called ______ of the differential equation


Order and degree of differential equation`(("d"^3y)/("d"x^3))^(1/6)`= 9 is ______


State whether the following statement is True or False: 

The degree of a differential equation is the power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any


State whether the following statement is True or False:  

The degree of a differential equation `"e"^(-("d"y)/("d"x)) = ("d"y)/("d"x) + "c"` is not defined


State whether the following statement is True or False:

Order and degree of differential equation `x ("d"^3y)/("d"x^3) + 6(("d"^2y)/("d"x^2))^2 + y` = 0 is (2, 2)


The degree of the differential equation `("d"^4"y")/"dx"^4 + sqrt(1 + ("dy"/"dx")^4)` = 0 is


The order and degree of the differential equation `[1 + 1/("dy"/"dx")^2]^(5/3) = 5 ("d"^2y)/"dx"^2` are respectively.


The order of the differential equation of all circles whose radius is 4, is ______.


The differential equation `x((d^2y)/dx^2)^3 + ((d^3y)/dx^3)^2y = x^2` is of ______ 


The order and degree of the differential equation `(dy/dx)^3 + ((d^3y)/dx^3) + xy = 0` are respectively ______


The order and degree of `(("n + 1")/"n")("d"^4"y")/"dx"^4 = ["n" + (("d"^2"y")/"dx"^2)^4]^(3//5)` are respectively.


The order of the differential equation whose general solution is given by `y=C_(1)e^(2x+C_2)+C_3e^x+C_4sin(x+C_5)` is ______.


The order of the differential equation of all circles of radius r, having centre on X-axis and passing through the origin is ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` is ______.


The order of the differential equation of all circles of given radius a is ______.


Order of the differential equation representing the family of ellipses having centre at origin and foci on x-axis is two.


Degree of the differential equation `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` is not defined.


The order and degree of the differential equation `(("d"^3y)/("d"x^3))^2 - 3 ("d"^2y)/("d"x^2) + 2(("d"y)/("d"x))^4` = y4 are ______.


The order and degree of the differential equation `[1 + (("d"y)/("d"x))^2] = ("d"^2y)/("d"x^2)` are ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + "e"^((dy)/(dx))` = 0 is ______.


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

State the order of the above given differential equation.


The degree of the differential equation `("d"^2"y")/("dx"^2) + 3("dy"/"dx")^2 = "x"^2 (("d"^2"y")/("dx"^2))^2` is:


The degree of differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin((dy)/(dx)) + 1` = 0 is:


The order of differential equation `2x^2 (d^2y)/(dx^2) - 3 (dy)/(dx) + y` = 0 is


Write the degree of the differential equation (y''')2 + 3(y") + 3xy' + 5y = 0


The order and degree of the differential equation `[1 + ((dy)/(dx))^3]^(2/3) = 8((d^3y)/(dx^3))` are respectively ______.


y2 = (x + c)3 is the general solution of the differential equation ______.


Determine the order and degree of the following differential equation:

`(d^2y)/(dx^2) + x((dy)/(dx)) + y` = 2 sin x


The degree of the differential equation `dy/dx - x = (y - x dy/dx)^-4` is ______.


The differential equation representing the family of curves y2 = `2c(x + sqrt(c))`, where c is a positive parameter, is of ______.


The degree of the differential equation `[1 + (dy/dx)^2]^3 = ((d^2y)/(dx^2))^2` is ______.


Find the order and degree of the differential equation

`sqrt(1 + 1/(dy/dx)^2) = ((d^2y)/(dx^2))^(3/2)`


Find the order and degree of the differential equation `(d^2y)/(dx^2) = root(3)(1 - (dy/dx)^4`


Find the order and degree of the differential equation `(1 + 3 dy/dx)^(2/3) = 4((d^3y)/(dx^3))`.


Share
Notifications



      Forgot password?
Use app×