State whether the following statement is True or False: If y = 4x, then dydx = 4x - Mathematics and Statistics

Advertisements
Advertisements
MCQ
True or False

State whether the following statement is True or False:

If y = 4x, then `("d"y)/("d"x)` = 4x  

Options

  • True

  • False

Advertisements

Solution

False

Concept: The Concept of Derivative - Derivatives of Logarithmic Functions
  Is there an error in this question or solution?
Chapter 1.3: Differentiation - Q.3

RELATED QUESTIONS

Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`


Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`


Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`


Choose the correct alternative.

If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?` 


If y = x log x, then `(d^2y)/dx^2`= _____.


Fill in the blank.

If y = y = [log (x)]2  then `("d"^2"y")/"dx"^2 =` _____.


State whether the following is True or False:

If y = e2, then `"dy"/"dx" = 2"e"`


If u = 5x and v = log x, then `("du")/("dv")` is ______


State whether the following statement is True or False:

If y = log(log x), then `("d"y)/("d"x)` = logx


Find `(dy)/(dx)`, if xy = yx 


Find `("d"y)/("d"x)`, if xy = log(xy)


If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt 


Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx


Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x 


Find `("d"y)/("d"x)`, if y = `x^(x^x)`


Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`


If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


`int 1/(4x^2 - 1) dx` = ______.


Find `dy/dx  "if",y=x^(e^x) `


Find `dy/dx , if y^x = e^(x+y)`


Find `dy/dx,"if"  y=x^x+(logx)^x`


Find `dy/dx if, y =  x^(e^x)`


Find `dy / dx` if, `y = x^(e^x)`


Share
Notifications



      Forgot password?
Use app×