State whether the following statement is True or False: ∫abf(x) dx=∫abf(a+b-x) dx - Mathematics and Statistics

Advertisements
Advertisements
MCQ
True or False

State whether the following statement is True or False:

`int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`

Options

  • True

  • False

Advertisements

Solution

True

Concept: Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 1.6: Definite Integration - Q.3

RELATED QUESTIONS

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate : `int_((-pi)/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`


Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_0^1 x tan^-1x*dx`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate : `int_0^1 sqrt((1 - x)/(1 + x))*dx`


Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following : `int_(-2)^(3) |x - 2|*dx`


Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______


Solve the following : `int_1^3 x^2 log x*dx`


Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


Solve the following : `int_1^2 x^2*dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


Evaluate `int_1^3 log x  "d"x`


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5dx`


Solve the following.

`int_1^3x^2 logx dx`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


The principle solutions of the equation cos θ = `1/2` are ______.


If `int_((-pi)/4) ^(pi/4) x^3 . sin^4 x  dx` = k then k = ______.


Evaluate the following definite intergral:

`int_1^2 (3x)/ ((9x^2 -1)) dx`


Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Share
Notifications



      Forgot password?
Use app×