Sum
State and prove Euler’s Theorem for three variables.
Advertisement Remove all ads
Solution
Statement: If u=f(x, y, z) is a homogeneous function of degree n, then -`x(delu)/(delx)+y(delu)/(dely)+z(delu)/(delz)=n u`
Let, u=f(x, y, z) is a homogeneous function of degree n.
Putting X = x t, Y = y t, Z = z t.
f(X,Y,Z) = tn f(x,y,z) ………. (1)
Diff LHS w.r.t t,
`(delf)/(delt)=(delf)/(delx).(delx)/(delt)+(delfdely)/(delydelt)+(delfdelz)/(delzdelt)`
`(delf)/(delt)=x(delf)/(delx).+y(delf)/(dely)+z(delf)/(delz)`…… (2)
Diff RHS w.r.t. t,
`(delf)/(delt)=nt^(n-1)f(x,y,z)`
Now put t = 1, we get `(delf)/(delt)=nf(x,y,z)`……… (3)
From equation 2 and 3, we get
`x(delf)/(delx).+y(delf)/(dely)+z(delf)/(delz)=nf(x,y,z)`
`x(delf)/(delx).+y(delf)/(dely)+z(delf)/(delz)=n u`
Hence proved
Concept: Euler’s Theorem on Homogeneous functions with two and three independent variables (with proof)
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads