Advertisement Remove all ads

Solve ( Y − X Y 2 ) D X − ( X + X 2 Y ) D Y = 0 - Applied Mathematics 2

Sum

Solve `(y-xy^2)dx-(x+x^2y)dy=0`

Advertisement Remove all ads

Solution

`(y-xy^2)dx-(x+x^2y)dy=0`  ---------------------(1)

Comparing the given eqn with M dx +N dy = 0

`thereforeM=(y-xy^2)   thereforeN=(x+x^2y)`

`(delM)/(dely)=1-2xy       (delN)/(delx)=-(1+2xy)`

`(delM)/(dely)!=(delN)/(delx)`

The given differential eqn is not exact diff. eqn.
But the given diff . eqn is in the form of 𝒚.𝒇(𝒙𝒚)𝒅𝒙+𝒙𝒇(𝒙𝒚)𝒅𝒚=𝟎

Integrating factor = I.F. =`1/(Mx-Ny)=1/(xy-x^2y^2+xy+x^2y^2)=1/(2xy)`

Multiply the I.F. to eqn (1)

`(1/(2x)-y/2)dx-(1/(2y)+x/2)dy=0`

`thereforeM_1=(1/(2x)-y/2)              N_1=-(1/(2y)+x/2)`

`intM_1dx=int(1/(2x)-y/2)dx=1/2(logx)-(xy)/2`

`del/(dely)intM_1 dx=(-x)/2`

`int[N_1-del/(dely)intM_1 dx]dy=int(-1)/(2y)dy=(-1)/2(logy)`

The solution of given diff. eqn is given by,

`intM_1dx+int[N_1-del/(dely)intM_1dx]dy=c`

`therefore1/2(logx)-(xy)/2-1/2(logy)=c`

`thereforelog(sqrtx/sqrty)-(xy)/2=c`

Concept: Equations Reducible to Exact Form by Using Integrating Factors
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×