Advertisement Remove all ads

Solve Y D X + X ( 1 − 3 X 2 Y 2 ) D Y = 0 - Applied Mathematics 2

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Solve `ydx+x(1-3x^2y^2)dy=0`

Advertisement Remove all ads

Solution

`ydx+x(1-3x^2y^2)dy=0`  …………….(1)

Compare the given eqn with Mdx + Ndy=0

∴ M = y  `therefore N=x(1-3x^2y^2)`

`(delM)/(dely)=1` `(delN)/(delx)=1-9x^2y^2`

`(delM)/(dely)!=(delN)/(delx)`

Hence the given diff. eqn is not exact.
But the given diff. eqn is in the form of yf(xy)dx + xf(xy)dy = 0

Integrating factor = `1/(Mx-Ny)=1/(xy-xy+3x^3y^3)=1/(3x^3y^3)`

Multiply the I.F. to eqn (1),

`1/(3x^3y^2)dx+[1/(3x^2y^3)-1/y]dy=0`

`thereforeM_1=1/(3x^3y^2)      N_1=[1/(3x^2y^3)-1/y]`

Now this diff. eqn is exact.
The solution of given diff. eqn is given by,

`intMdx+int[N-del/(dely)Mdx]dy=c`

`intM_1dx=int1/(3x^3y^2)dx=(-1)/(6y^2x^2)`

`del/(dely)intM_1dx=1/(3x^2y^3`

`int[N_1-del/(dely)intM_1dx]dy=int[1/(3x^2y^3)-1/y-1/(3x^2y^3)]dy`

`=int(-1)/ydy=-logy`

`therefore (-1)/(6y^2x^2)-logy=c`

Concept: Equations Reducible to Exact Form by Using Integrating Factors
  Is there an error in this question or solution?
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×