Sum
Solve : (x2 – x)2 + 5(x2 – x)+ 4=0
Advertisement Remove all ads
Solution
(x2 – x)2 + 5(x2 – x)+ 4=0
Let `x^2 - x = y`
Then `y^2 + 5y + 4 = 0`
`=> y^2 + 4y + y + 4 = 0`
`=> y(y + 4) + 1(y + 4) = 0`
`=> (y + 4)(y + 1) = 0`
if y + 4 = 0 or y + 1 = 0
`=> x^2 - x + 4 = 0 or x^2 - x + 1 = 0`
`=> x = (-(-1)+-sqrt((-1)^2 - 4(1)(4)))/(2(1)) ` or `(-(-1) +- sqrt((-1)^2 - 4(1)(1)))/(2(1))`
`=> x = (1 +- sqrt(-15))/2 ("reject")` or `x = (1 +- sqrt(-3))/2 ("reject")`
∴ Given equation has no real solution
Concept: Quadratic Equations
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads