Advertisement Remove all ads

Solve X Y ( 1 + X Y 2 ) D Y D X = 1 - Applied Mathematics 2

Sum

Solve  `xy(1+xy^2)(dy)/(dx)=1`

Advertisement Remove all ads

Solution

`therefore(dx)/(dy)=xy+x^2y^3`

`therefore 1/x^2(dx)/(dy)-1/xy=y^3`  Now, put`-1/x=v`

`therefore (dv)/(dy)+vy=y^3` ...........................``

This is linear differential eqn.

∴ Integrating Factor `=e^(intydy)=y^2/e^2`

The solution of linear diff. eqn is given by,

𝒗.(I.F.) = ∫(𝑰.𝑭.)(𝑹.𝑯.𝑺) + c

`ve^(y^2/2)=inte^(y^2/2)(y^2-2)+c`

Where c is constant of integration.

Concept: Linear Differential Equations
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×