# Solve X and Y If : ( √32 )X ÷ 2y + 1 = 1 and 8y - 164 - X/2 = 0 - Mathematics

Sum

Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0

#### Solution

Consider the quation
(sqrt32)^x ÷ 2^(y + 1) = 1
⇒ ( sqrt(2 xx 2 xx 2 xx 2 xx 2))^x ÷ 2^(y + 1) = 1
⇒ ( sqrt(2^5))^x ÷ 2^(y + 1) = 1
⇒ [(2^5)^(1/2)]^x ÷ 2^(y + 1) = x^0

⇒ 2^(5x/2) ÷ 2^(y + 1 ) = x^0

⇒ (5x)/2 - ( y + 1) = 0
⇒ 5x - 2( y + 1 ) = 0
⇒ 5x - 2y - 2 = 0                      ....(1)

Now consider the other equation
8^y - 16^( 4 - x/2 ) = 0
⇒ (2^3)^y - (2^4)^(4 - x/2) = 0

⇒ 2^(3y) - 2^[4( 4 - x/2)] = 0

⇒ 2^(3y) = 2^[4( 4 - x/2)]

⇒ 3y = 4( 4 - x/2)

⇒ 3y = 16 - 2x
⇒ 2x + 3y = 16                      ...(2)

Thus, We have two equations,
5x - 2y = 2                           ...(1)
2x + 3y = 16                        ....(2)
Multiplying equation (1) by 3 and (2) by 2, We have
15x - 6y = 6                         ....(3)
4x + 6y = 32                        ....(4)
Adding equation (3) and (4), We have
19x = 38
⇒ x = 2
Substituting the value of x in equation (1), We have
5(2) - 2y = 2
⇒ 10 - 2y = 2
⇒ 2y = 10 - 2
⇒ 2y = 8
⇒ y = 8/2
⇒ y = 4
Thus the values of x and y are : x = 2 and y = 4.

Concept: Solving Exponential Equations
Is there an error in this question or solution?

#### APPEARS IN

Selina Concise Mathematics Class 9 ICSE
Chapter 7 Indices (Exponents)
Exercise 7 (B) | Q 6 | Page 100