Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Solve for x
`(2x)/(x-3)+1/(2x+3)+(3x+9)/((x-3)(2x+3)) = 0, x!=3,`
Advertisement Remove all ads
Solution
Given:
`(2x)/(x-3)+1/(2x+3)+(3x+9)/((x-3)(2x+3))=0`
`=>(2x(2x+3)+(x-3)+3x+9)/((x-3)(2x+3))=0`
⇒ 4x2+6x+x−3+3x+9=0
⇒ 4x2+10x+6=0
⇒ 4x2+4x+6x+6=0
⇒ 4x(x+1)+6(x+1)=0
⇒(x+1)(4x+6)=0
⇒x+1=0 or 4x+6=0
`=>x=-1,-3/2`
But
`x !=-3/2`
Thus, x=−1 is the solution of the given equation.
Concept: Solutions of Quadratic Equations by Factorization
Is there an error in this question or solution?