Advertisement Remove all ads

Solve X 2 D 2 Y D X 2 + 3 X D Y D X + 3 Y = Log X . Cos ( Log X ) X - Applied Mathematics 2

Solve `x^2 (d^2y)/dx^2+3x dy/dx+3y =(log x.cos (log x))/x`

Advertisement Remove all ads

Solution

Given that, 

`x^2( d^2y)/dx^2+3x dy/dx+3y=(log x.cos (log x))/x` 

Putting z = log x and x = ez, we get 

`[D(D-1)+3D+3]y=e^-z.z. cos z` 

`[D^2+2D+3]y=e^-z.z.cos z` 

∴ ` "The A.E is" D^2+2D+3=0` 

∴ `D= (-2+-2sqrt2.i)/2=-1+- sqrt2.i` 

∴`" The C.F. is y"= e^-z.z. cos z` 

=`e^-z 1/((D-1)^2+2(D-1)+3).z.cos z= e^-z. 1/(D^2+2).z.cos z`  

= `e^-z [Z-1/(D^2+2).2D].1/(D^2+2). cos z` 

=`e_z [z-1/(D^2+2).2D]cos z=e^-z [z cosz+1/(D^2+2).2 sin z]` 

=` e^-z[z cos z+2 sin z]` 

The complete solution is, 

`y=C.F.+P.I.` 

`y=e^-z (C_1 cos sqrt2z+C_2 sin sqrt2z)+e^-z[z cos z+2 sin z]` 

`Y=1/x(C_1 cos sqrt2 log x+C_2 sin sqrt2 log)+1/x [log x cos log x+2 sin log x]`

Concept: Equations Reducible to Exact Form by Using Integrating Factors
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×