Advertisement Remove all ads

Solve by Variation of Parameter Method D 2 Y D X 2 + 3 D Y D X + 2 Y = E E X . - Applied Mathematics 2

Sum

Solve by variation of parameter method `(d^2y)/(dx^2)+3(dy)/(dx)+2y=e^(e^x)`.

Advertisement Remove all ads

Solution

`(d^2y)/(dx^2)+3(dy)/(dx)+2y=e^(e^x)`.

Put D=`d/(dx)`   `thereforeD^2y+3Dy+2y=0`

For complementary solution,
f(D)=0
`thereforeD^2+3D+2=0`

𝑫= −𝟏 ,−𝟐

`therefore y_c=c_1e^(x)+c_2e^(-2x)`

Particular integral is given by ,

`y_p=y_1p_1+y_2p_2`

where`p_1=int(-y_2x)/w dx`

`p_1=int(y_1x)/w dx`

`w=|(y_1,y_2),(y'_1,y'_2)|`

`therefore w=|(e^(-x),e^(-2x)),(-e^(-x),-2e^(-2x))|=-e^(-3x)`

`p_1=int(e^(-2x)e^(e^x))/e^(-3x) dx=inte^(e^x)e^xdx=inte^t dt=e^(e^x) ........{"Put"  e^x=t=>e^xdx=dt}`

`p_2=int(e^(-2x))/e^(-3x)e^(e^x) dx=inte^(e^x)e^(2x) dx=int t e^t dt=e^x e^(e^x)-e^(e^x)`

`therefore y_p=e^x e^(e^x)-(e^x e^(e^x)-e^(e^x))e^(-2x)=e^(-2x) e^(e^x)`

The general solution of given differential eqn is given by ,

`y_g=y_c+y_p=c_1e^(-x)+c_2e^(-2x)+e^(-2x)e^(e^x)`

Concept: Method of Variation of Parameters
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×