Advertisement Remove all ads

Solve the Following Question and Mark the Best Possible Option. If 0 < B < A, Then Find the Minimum Value of A + 1/((A - B)B) - Mathematics

MCQ

Solve the following question and mark the best possible option.
If 0 < b < a, then find the minimum value of `a + 1/((a - b)b)`.

Options

  • 3

  • 4

  • 2

  • 1

Advertisement Remove all ads

Solution

We have `a + 1/((a - b)b)`

= `b + (a - b) + 1/((a - b)b) ≥ 3 root(3)(b(a - b) xx 1/((a - b)b)`

= a + `1/((a - b)b)` ≥ 3.
Hence the minimum value is 3.

Concept: Simplification
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×