Sum
Solve the following problem :
If X follows Poisson distribution with parameter m such that
`("P"("X" = x + 1))/("P"("X" = x)) = (2)/(x + 1)`
Find mean and variance of X.
Advertisement Remove all ads
Solution
Given, X ~ P(m) and `("P"("X" = x + 1))/("P"("X" = x)) = (2)/(x + 1)`
The p.m.f. of X is given by
P(X = x) = `("e"^(-"m")"m"^x)/(x!)`
∴ According to the given condition, we get
`(("e"^(-"m")"m"^(x + 1))/((x + 1)!))/(("e"^(-"m")"m"^x)/(x!)) = (2)/(x + 1)`
∴ `("e"^(-"m") xx "m"^x xx "m")/((x + 1) xx x!) xx (x!)/("e"^(-"m") xx "m"^x) = (2)/(x + 1)`
∴ `"m"/(x + 1) = (2)/(x + 1)`
∴ m = 2
∴ Mean = Variance = m = 2.
Concept: Poisson Distribution
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads