Solve the following :
Find the area of the region lying between the parabolas :
y2 = 4x and x2 = 4y
Solution
For finding the points of intersection of the two parabolas, we equate the values of y2 from their equations.
From the equation x2 = 4y, y = `x^2/(4)`
∴ y = `x^4/(16)`
∴ `x^4/(16)` = 4x
∴ x4 – 64x = 0
∴ x(x3 – 64) = 0
∴ x = 0 or x3 = 64
i.e. x = 0 or x = 4
When x = 0, y = 0
When x = 4, y = `(4^2)/(4)` = 4
∴ the points of intersection are O(0, 0) and A(4, 4).
Required area = area of the region OBACO
= [area of the region ODACO] – [area of the region ODABO]
Now, area of the region ODACO
= area under the parabola y2 = 4x,
i.e. y = `2sqrt(x)` between x = 0 and x = 4
= `int_0^4 2sqrt(x)*dx`
= `[2 (x^(3/2))/(3/2)]_0^4`
= `2 xx (2)/(3) xx 4^(3/2) - 0`
= `(4)/(3) xx (2^3)`
= `(32)/(3)`
Area ofthe region ODABO
= area under the rabola x2 = 4y,
i.e. y = `x^2/(4)` between x = 0 and x = 4
= `int_0^4 (1)/(4)x^2*dx`
= `(1)/(4)[x^3/(3)]_0^4`
= `(1)/(4)(64/3 - 0)`
= `(16)/(3)`
∴ required area = `(32)/(3) - (16)/(3)`
= `(16)/(3)"sq units"`.