Solve the following equations by method of inversion.
2x – y + z = 1, x + 2y + 3z = 8 and 3x + y – 4z = 1
Solution
Matrix m the given system of equations is
`[(2, -1, 1),(1, 2, 3),(3, 1, -4)][(x),(y),(z)] = [(1),(8),(1)]`
This is of the form AX = B
where A = `[(2, -1, 1),(1, 2, 3),(3, 1, -4)], "X" = [(x),(y),(y),(z)]`
and B = `[(1),(8),(1)]`
To determine X , we have to find A–1
Now, |A| = `|(2, -1, 1),(1, 2, 3),(3, 1, -4)|`
= 2(– 8 – 3) + 1(–4 – 9) + 1(1 – 6)
= – 22 – 13 – 5
= – 40 ≠ 0
∴ A–1 exists.
Consider AA–1 = I
∴ `[(2, -1, 1),(1, 2, 3),(3, 1, -4)] "A"^-1 = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Applying R1 ↔ R2, we get
`[(1, 2, 3),(2, -1, 1),(3, 1, -4)] "A"^-1 = [(0, 1, 0),(1, 0, 0),(0, 0, 1)]`
Applying R2 → R2 – 2R1, R3 → R3 – 3R1, we get
`[(1, 2, 3),(0, -5, -5),(0, -5, -13)] "A"^-1 = [(0, 1, 0),(1, -2, 0),(0, -3, 1)]`
Applying R2 → `((-1)/5)` R2, we get
`[(1, 2, 3),(0, 1,1),(0, -5, -13)] "A"^-1 = [(0, 1, 0),((-1)/5, 2/5, 0),(0, -3, 1)]`
Appying R1 → R1 – 2R2, R3 → R3 – 5R2, we get
`[(1, 0, 1),(0, 1, 1),(0, 0, -8)] "A"^-1 = [(2/5, 1/5, 0),((-1)/5, 2/5, 0),(-1, -1, 1)]`
Applying R3 → `((-1)/8)` R3, we get
`[(1, 0, 0),(0, 1, 1),(0, 0, 1)] "A"^-1 = [(2/5, 1/5, 0),((-1)/5, 2/5, 0),(1/8, 1/8, (-1)/8)]`
Appying R1 → R1 – R3, R2 → R2 – R3, we get
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)] "A"^-1 = [(11/40, 3/40, 1/8),((-13)/40, 11/40, 1/8),(1/8, 1/8, (-1)/8)]`
∴ A–1 = `[(11/40, 3/40, 1/8),((-13)/40, 11/40, 1/8),(1/8, 1/8, (-1)/8)]`
∴ A–1 = `(1)/(40)[(11, 3, 5),(-13, 11, 5),(5, 5, -5)]`
Pre-mutiplying AX = B by A–1, we get
A–1(AX) = A–1B
∴ (A–1 A)X = A–1 B
∴ Ix = A–1 B
∴ X = A–1 B ...(i)
∴ X = `(1)/(40) = [(11, 3, 5),(-13, 11, 5),(5, 5, -5)] [(1),(8),(1)]` ...[From (i)]
∴ `(1)/(40)[(11 + 4 + 5),(-13 + 88 + 5),(5 + 40 - 5)]`
= `(1)/(40)[(40),(80),(40)]`
∴ `[(x),(y),(z)] = [(1),(2),(3)]`
∴ By equality of matrices, we get
x = 1, y = 2, z = 1.