Advertisement
Advertisement
Sum
Solve the following differential equation:
`"x" "dy"/"dx" - "y" + "x sin"("y"/"x") = 0`
Advertisement
Solution
`"x" "dy"/"dx" - "y" + "x sin"("y"/"x") = 0` ...(1)
Put y = vx
∴ `"dy"/"dx" = "v + x" "dv"/"dx" and "y"/"x" = "v"`
∴ (1) becomes, x`("v + x""dv"/"dx") - "vx + x sin v" = 0`
∴ `"vx" + "x"^2 "dv"/"dx" - "vx" + "x sin v" = 0`
∴ `"x"^2 "dv"/"dx" + "x sin v" = 0`
∴ `1/"sin v" "dv" + 1/"x" "dx" = 0`
Integrating, we get
∴ `int "cosec v dv" + int1/"x" "dx" = "c"_1`
∴ `log |"cosec v - cot v"| + log |"x"| = log "c"`, where c1 = log c
∴ `log |"x" ("cosec v" - "cot v")| = log "c"`
∴ `"x"(1/(sin"v") - (cos "v")/(sin"v")) = "c"`
∴ x(1 - cos v) = c sin v
∴ `"x"[1 - cos("y"/"x")] = "c sin"("y"/"x")`
This is the general solution.
Is there an error in this question or solution?