Solve the following differential equation. dydx+x-2y2x-y=0 - Mathematics and Statistics

Sum

Solve the following differential equation.

dy /dx +(x-2 y)/ (2x- y)= 0

Solution

dy /dx +(x-2 y)/ (2x- y)= 0 ....(i)

Put y = tx ...(ii)

Differentiating w.r.t. x, we get

dy/dx = t + x dt/dx ...(iii)

Substituting (ii) and (iii) in (i), we get

t + x dt/dx + (x-2tx)/(2x-tx) = 0

∴x dt/dx +t + (1-2t)/2-t = 0

∴x dt/dx  + (2t - t^2+1-2t)/2-t = 0

∴x dt/dx  + (1-t^2)/(2-t )= 0

∴ x dt/dx  = - (1-t^2)/(2-t )

∴ = (2-t)/(1-t^2)dt = dx/x

∴  (2-t)/(t^2-1)dt = dx/x

Integrating on both sides, we get

int (2-t)/(t^2-1) dt = int dx/x

∴  int (2-t)/((t+1)(t-1)) dt = int dx/x

Let 2-t/((t+1)(t-1)) = A/(t+1)+ B/(t-1)

∴  2 - t = A(t -1) + B(t + 1)

Putting t = 1, we get

∴  2 -1 = A(1 -1) + B(1 + 1)

∴  B = 1 /2

Putting t = -1, we get

2 -(-1) = A(-1 -1) + B(-1 + 1)

∴  A = (-3)/2

∴ int(-3/2)/(t+1)dt +int(1/2)/(t-1) dt = intdx/x

∴(-3)/2 int 1/(t+1)dt + 1/2int 1/(t-1) dt = int dx/x

∴(-3)/2 log|t+1| + 1/2 log |t-1| = log |x| + log |c_1|

∴ -3 log |(y+x)/x| + log|(y-x)/x| = 2log |x| + 2 log |c_1|

∴ -3 log |y+x| + 3 log |x| + log | y -x| - log |x|

= 2 log |x| + 2 log |c1|

∴ log |y - x| = 3 log |y+x|+ 2 log |c1|

∴  log |y- x |= log |( y+ x )3|+ log | c12|

∴  log | y - x| = log | c12 ( x+y)3|

∴  (y - x) = c(x + y) 3 …  |c12 c|

Notes

Answer given in the textbook is log |(x+y)/(x-y)| - 1/2 log | x^2 - y^2| + 2 log x = log c.

However, as per our calculation it is ‘(y -x) = c(x+y)3.

Concept: Differential Equations
Is there an error in this question or solution?

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) 12th Standard HSC Maharashtra State Board
Chapter 8 Differential Equation and Applications
Exercise 8.4 | Q 1.4 | Page 167