Advertisement Remove all ads

Solve the Following Differential Equation: (3xy + Y2) Dx + (X2 + Xy) Dy = 0 - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 

Advertisement Remove all ads

Solution

(3xy + y2) dx + (x2 + xy) dy = 0 

`(dy)/(dx) = - ((3xy + y^2)/(x^2 + xy))`

Put y = vx ⇒ `(dy)/(dx) = v + x (dv)/(dx)` 

`v + x (dv)/(dx) = - ((3x . vx + v^2 x^2)/(x^2 + x . vx))`

` x (dv)/(dx) =  (-3v - v^2)/(1 + v) - v`

` x (dv)/(dx) =  (-3v - v^2 - v - v^2)/(1 + v) `

` x (dv)/(dx) = (-2v^2 - 4v)/(1 + v)`

`(1 + v)/(2v^2 + 4v)  "dv" = -(1)/(x) "dx"`

` int_  (1 + v)/(2v^2 + 4v)  "dv" = int_  -(1)/(x) "dx"`

` 1/4  int_  (2 + 2v)/(2v + v^2) "dv" = - int_  (1)/(x) "dx"`

`1/4 log  | v^2 + 2v| = - log  | x | + c`

`1/4 log ((y^2)/(x^2) + 2 (y)/(x)) . x = c `

`log ((y^2)/(x) + 2y) = 4c` 

Concept: Logarithmic Differentiation
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×