Solve the following : ∫12x+3x(x+2)⋅dx - Mathematics and Statistics

Advertisements
Advertisements
Sum

Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`

Advertisements

Solution

Let I = `int_1^2 (x + 3)/(x (x + 2))*dx`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/(x + 2)`    ...(i)

∴ x + 3 = A(x + 2) + Bx   ...(ii)
Putting x = 0 in (ii), we get
3 = A(0 + 2) + B(0)
∴ 3 = 2A
∴ A = `(3)/(2)`
Putting x = – 2 in (ii), we get
– 2 + 3 = A(–2 + 2) + B(– 2)
∴ 1 = – 2B
∴ B = `(1)/(2)`
From (i), we get
`(x + 3)/(x(x + 2)) = (3)/(2)*(1)/x - (1)/(2(x + 2)`

∴ I = `int_1^2[3/(2x) - (1)/(2(x + 2))]*dx`

= `(3)/(2) int_1^2 (1)/x*dx - (1)/(2) int_1^2 (1)/(x + 2)*dx`

= `(3)/(2)[log|x|]_1^2 - (1)/(2)[log|x + 2|]_1^2`

= `(3)/(2)[log |2| - log|1|] - (1)/(2) [log|2 +2| - log|1 + 2|]`

= `(3)/(2)(log 2 - 0) - (1)/(2)(log4 - log3)`

= `(3)/(2) log2 - (1)/(2)(log  4/3)`

= `(1)/(2)(3log2 - log  4/3)`

= `(1)/(2) log(2^3 xx 3/4)`

= `(1)/(2)log((8 xx 3)/4)`

∴ I = `(1)/(2)log6`.

Concept: Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 6: Definite Integration - Miscellaneous Exercise 6 [Page 150]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) 12th Standard HSC Maharashtra State Board
Chapter 6 Definite Integration
Miscellaneous Exercise 6 | Q 4.02 | Page 150

RELATED QUESTIONS

Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate : `int_((-pi)/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`


Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate : `int_0^(2pi) sqrt(cos x) sin^3x*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate the following : `int_((-pi)/2)^(pi/2) log((2 + sinx)/(2 - sinx))*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`


Choose the correct option from the given alternatives :

`int_2^3 dx/(x(x^3 - 1))` =


Choose the correct option from the given alternatives : 

`int_0^(pi/2) sn^6x cos^2x*dx` =


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following : `int_(-2)^(3) |x - 2|*dx`


Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`


Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`


Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`


Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Solve the following : `int_2^3 x/(x^2 - 1)*dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


`int_0^1 1/(2x + 5)dx` = ______


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Evaluate:

`int_0^1 |x| dx`


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Solve the following.

`int_1^3 x^2 log x  dx`


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


The principle solutions of the equation cos θ = `1/2` are ______.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Share
Notifications



      Forgot password?
Use app×