Solve the equation – 4 + (–1) + 2 + ... + x = 437
Solution
Given equation is,
– 4 + (–1) + 2 + … + x = 437 ......(i)
Here, –4 – 1 + 2 + … + x forms an AP with first term = – 4
Common difference = – 1 – (-4) = 3
an = l = x
∵ nth term of an AP, an = l = a + (n – 1)d
⇒ x = – 4 + (n – 1)3 .......(ii)
⇒ `(x + 4)/3 = n - 1`
⇒ `n = (x + 7)/3`
∴ Sum of an AP,
`S_n = n/2[2a + (n - 1)d]`
`S_n = (x + 7)/(2 xx 3)[2(-4) + ((x + 4)/3) * 3]`
= `(x + 7)/(2 xx 3)(-8 + x + 4)`
= `((x + 7)(x - 4))/(2 xx 3)`
From equation (i),
`S_n` = 437
⇒ `((x + 7)(x - 4))/(2 xx 3)` = 437
⇒ `x^2 + 7x - 4x - 28 = 874 xx 3`
⇒ `x^2 + 3x - 2650` = 0
`x = (-3 +- sqrt((3)^2 - 4(-2650)))/2` ....[By quadratic formula]
= `(-3 +- sqrt(9 + 106000))/2`
= `(-3 +- sqrt(10609))/2`
= `(-3 +- 103)/2`
= `100/2, (-106)/2`
= `50, -53`
Here, x cannot be negative i.e., x ≠ –53
Also for x = –53, n will be negative which is not possible
Hence, the required value of x is 50.