Solve the differential equation "dy"/"dx" = 1 + "x"^2 + "y"^2 +"x"^2"y"^2, given that y = 1 when x = 0. - Mathematics

Advertisement Remove all ads
Sum

Solve the differential equation `"dy"/"dx" = 1 + "x"^2 +  "y"^2  +"x"^2"y"^2`, given that y = 1 when x = 0.

Advertisement Remove all ads

Solution

The given differential equation is:

`"dy"/"dx" = 1 + "x"^2 +  "y"^2  +"x"^2"y"^2`

`"dy"/"dx" (1 +"x"^2)(1+"y"^2)`

`⇒ "dy"/(1+"y"^2) = (1+"x"^2)"dx"`

Integrating both sides of this equation, we get:

`int "dy"/(1+"y"^2) = int (1+"x"^2)"dx"`

`⇒ tan^-1"y" = int"dx" + int"x"^2"dx"`

`⇒ tan^-1 "y" = "x"+"x"^3/3 +"C"`

It is given that y = 1 when x = 0.

`⇒ tan^-1 (1) = 0 + 0^3/3 + "C"`

`⇒ "C" = pi/4`

`⇒ tan^-1 "y" = "x" + "x"^3/3 + pi/4`

This is the required solution of the given differential equation.

Concept: Methods of Solving First Order, First Degree Differential Equations - Differential Equations with Variables Separable Method
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×