Solve the differential equation: (1 + y2) dx = (tan−1 y − x) dy - Mathematics and Statistics

Advertisements
Advertisements
Sum

Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy

Advertisements

Solution

We have,

\[\left( 1 + y^2 \right)dx = \left( \tan^{- 1} y - x \right)dy\]

\[ \Rightarrow \frac{dx}{dy} = \frac{\tan^{- 1} y - x}{1 + y^2}\]

\[ \Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{\tan^{- 1} y}{1 + y^2}\]

\[\text{Comparing with }\frac{dx}{dy} + Px = Q,\text{ we get}\]

\[P = \frac{1}{1 + y^2} \]

\[Q = \frac{\tan^{- 1} y}{1 + y^2}\]

Now,

\[I . F . = e^{\int\frac{1}{1 + y^2}dy} = e^{\tan^{- 1} y} \]

So, the solution is given by

\[x \times e^{\tan^{- 1} y} = \int\frac{\tan^{- 1} y}{1 + y^2} \times e^{\tan^{- 1} y} dy + C\]

\[ \Rightarrow x e^{\tan^{- 1} y} = I + C . . . . . . . . \left( 1 \right)\]

Now,

\[I = \int\frac{\tan^{- 1} y}{1 + y^2} \times e^{\tan^{- 1} y} dy\]

\[\text{Putting }t = \tan^{- 1} y,\text{ we get}\]

\[dt = \frac{1}{1 + y^2}dy\]

\[\therefore I = \int\underset{I}{t}\times \underset{II}{e^t} \text{  }dt\]

\[ = t \times \int e^t dt - \int\left( \frac{d t}{d t} \times \int e^t dt \right)dt\]

\[ = t e^t - \int e^t dt\]

\[ = t e^t - e^t \]

\[ \therefore I = \tan^{- 1} y e^{\tan^{- 1} y} - e^{\tan^{- 1} y} \]

\[ = e^{\tan^{- 1} y} \left( \tan^{- 1} y - 1 \right)\]

Putting the value of `I` in (1), we get

\[x e^{\tan^{- 1} y} = e^{\tan^{- 1} y} \left( \tan^{- 1} y - 1 \right) + C\]

  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 146]

APPEARS IN

RD Sharma Class 12 Maths
Chapter 22 Differential Equations
Revision Exercise | Q 60 | Page 146

RELATED QUESTIONS

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the differential equation representing the curve y = cx + c2.


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Solve the differential equation `dy/dx -y =e^x`


verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation

`y = sqrt(a^2 - x^2 ) x in (-a,a)     :     x + y  dy/dx = 0(y != 0)`

 


Find the general solution of the differential equation  `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0`


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + + 1) = (1 – – y – 2xy), where is parameter


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0)`


If y = etan x+ (log x)tan x then find dy/dx


Solve the differential equation `cos^2 x dy/dx` + y = tan x


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


The number of arbitrary constants in the particular solution of a differential equation of third order is


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


\[\frac{dy}{dx} = \left( x + y \right)^2\]


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


x2 dy + (x2 − xy + y2) dx = 0


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


The member of arbitrary constants in the particulars solution of a differential equation of third order as


Which of the following differential equations has `y = x` as one of its particular solution?


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications



      Forgot password?
Use app×