Advertisement Remove all ads

Solve by Gauss Jacobi Iteration Method: 5x – Y + Z = 10, 2x + 4y = 12, X + Y + 5z = -1. - Applied Mathematics 1

Solve by Gauss Jacobi Iteration Method: 5x – y + z = 10, 2x + 4y = 12, x + y + 5z = -1. 

Advertisement Remove all ads

Solution

From 1st equation, 5x = 10 + y – z

∴` x=1/5(10+y-z)=0.2(10+y-z)`

Similarly,
From `2^(nd)` equation, x + 2y = 6 

∴ 2y = 6 – x

`y=1/2(6-x)=0.5(6-x)` 

z = 0.2( - 1 – x – y) = -0.2(1 + x + y) 

Iteration 1: 

Put `x_0 = y_0 = z_0`

`∴x_1 = = 0.2(10 + y_0 – z_0) = = 0.2(10 + 0 – 0) = 2`

 `∴y_1 = 0.5(6 – x_0) = 0.5(6 – 0) = 3`

 `∴z_1 = -0.2(1 + x_0 + y_0) = -0.2(1 + 0 + 0) = -0.2`

Iteration 2:

Put` x_1 = 2;y_1 = 3; z_1 = -0.2` 

`∴y_2 = 0.5(6 – x_1) = 0.5(6 – 2) = 2`

`∴z_2 = -0.2(1 + x_1 + y_1) = -0.2(1 + 2 + 3) = -1.2`

Iteration 3: 

Put x_2 = 2.64; y_2 = 2; z_2 = -1.2
`∴x_3 = 0.2(10 + y_2 – z_2) = 0.2(10 + 2 = 1.2) = 2.64`
`∴y_3 = 0.5(6 – x_2) = 0.5(6 – 2.64) = 1.68`
`∴z_3 = -0.2(1 + x_2 + y_2) = -0.2(1 + 2.64 + 2) = -1.128`

Iteration 4:
Put `x_3 = 2.64; y_3 = 1.68; z_3 = -1.128`
`∴x4 = 0.2(10 + y_3 – z_3) = 0.2(10 + 1.68 = 1.128) = 2.5615`
`∴y_4 = 0.5(6 – x_3) = 0.5(6 – 2.64) = 1.68`
`∴z_4 = -0.2(1 + x_3 + y_3) = -0.2(1 + 2.64 + 1.68) = -1.0640`

Iteration 5:
`Put x_4 = 2.5616; y_4 = 1.68; z_4 = -1.0640`
`∴x_5 = 0.2(10 + y_4 – z_4) = 0.2(10 + 1.68 + 1.0640) = 2.5488`
`∴y_5 = 0.5(6 – x_4) = 0.5(6 – 2.5616) = 1.7172`
`∴z_5 = -0.2(1 + x_4 + y_4) = -0.2(1 + 2.5616 + 1.68) = -1.0483`

Iteration 6:
`Put x_5 = 2.5488; y_5 = 1.7192; z5 = -1.0483`
`∴x6 = 0.2(10 + y_5 – z5) = 0.2(10 + 1.7192 + 1.0483) = 2.5535`
`∴y6 = 0.5(6 – x_5) = 0.5(6 – 2.5488) = 1.7256`
`∴z_6 = -0.2(1 + x_5 + y_5) = -0.2(1 + 2.5488 + 1.7192) = -1.0536`

Iteration 7:
`Put x_6 = 2.5535; y_6 = 1.7256; z_6 = -1.0536`
`∴x_7 = 0.2(10 + y_6 – z_6) = 0.2(10 + 1.7256 =1.0536) = 2.5558`
`∴y_7 = 0.57(6 – x6) = 0.5(6 – 2.5535) = 1.7232`
`∴z_7 = -0.2(1 + x_6 + y_6) = -0.2(1 + 2.5535 + 1.7256) = -1.0558`

Iteration 8:
Put `x_7 = 2.5558; y_7 = 1.7232; z_7 = -1.0558`
`∴x_8 = 0.2(10 + y_7 – z_7) = 0.2(10 + 1.7232 =1.0558) = 2.5558`
`∴y_8 = 0.57(6 – x_7) = 0.5(6 – 2.5558) = 1.7221`
`∴_7 = -0.2(1 + x_6 + y_6) = -0.2(1 + 2.5558 + 1.7232) = -1.0558`

Hence, by Gauss Jacobi Iteration Method, the solution is
x = 2.5558, y = 1.7221, z = -1.0558

Concept: Gauss Jacobi Iteration Method
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×